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ABSTRACT OF THE DISSERTATION

Higher-Order Optimal Estimation of Binary 

Average Treatment Effects

by

Paul Joseph Gift 

Doctor of Philosophy in Economics 

University of California, Los Angeles, 2002 

Professor Guido Imbens, Chair

Many times economists and other scientists are interested in estimating the causal 

effect of a binary treatment on a scalar outcome. In this paper, I propose a procedure for 

higher-order optimal estimation of average treatment effects with finite sample sizes. 

Hahn (1998) shows that adjustment for the known propensity score is in general 

inefficient. Hirano, Imbens, and Ridder (2000) show that adjusting for the non- 

parametrically estimated propensity score by weighting is consistent and asymptotically 

efficient. However, this estim ator will tend not to be the optimal estimator in small 

samples. I propose estimation o f average treatment effects within a GMM system of 

moments. A finite number of auxiliary moment restrictions reflecting one’s knowledge

x
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of the propensity score as the conditional expectation of the treatment indicator can be 

added to increase efficiency. Asymptotic expansions are used to derive a higher-order 

mean squared error approximation for the resulting estimator. Following the work of 

Donald and Newey (1999), I develop a higher-order asymptotically optimal criterion for 

the selection of auxiliary moments. In an experimental setting, Monte Carlo simulations 

show that this moment selection procedure performs very well under a variety of data 

generating processes. In many cases, a significant efficiency gain obtains relative to the 

true propensity score estim ator and an estimator similar to the HIR non-parametric 

propensity score estimator. In a non-experimental setting, the GMM procedure above is 

adjusted ;o account for the fact that the propensity score is unknown. The propensity 

score is estimated in a flexible Logit framework. This Unknown Propensity Score GMM 

estimator is more efficient than the HIR estimator in finite samples, with the efficiency 

gain going to zero as sample size increases. However, the non-experimental moment 

selection criterion is not asymptotically optimal and performs poorly in small samples. 

Finally, through simulations, I develop a finite sample compliment to Hahn (1998). 

Specifically, the propensity score is not  ancillary for estimation o f average treatment 

effects, relative to the HIR estim ator and the Unknown Propensity Score GMM estimator. 

These results hold whether the econometrician has data on a vector of covariates or just a 

scalar.

xi
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1. C hap ter 1

Higher-Order Optimal Estimation of Binary Average 

Treatment Effects with Experimental Data

1.1 Introduction

Many times researchers in economics and other sciences are interested in 

estimating the effect of a binary treatment on a scalar outcome. Some examples are the 

effect of job training on future earnings, the effect of a takeover on firm productivity, or 

the effect of a new drug or vaccine on life span. This is generally done in one o f two 

settings, experimental and non-experimental. In an experimental setting, selection into 

treatment status is undertaken randomly by the experiment coordinators. Thus, treatment 

status is independent of potential outcomes. This type of data can be very useful for 

estimating average treatment effects. A simple, common estimator will yield unbiased, 

but possibly sub-optimal, results. Employing data cm pre-treatment covariates can lead to 

significant efficiency gains in estimation in this setting. However, other times one is left 

with no other viable alternative but to use data from non-experimental studies. In this 

situation, economists typically believe that assignment to treatment is not independent of 

potential outcomes. In other words, the economics agents involved have self-selected

1
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into a given treatment status. If one has data on pre-treatment variables in which self- 

selection is based, one can assume unconfoundedness. This implies that assignment to 

treatment is independent of potential outcomes conditional on the pre-treatment variables. 

Controlling for these pre-treatment variables will remove all biases associated with 

simple estimation of the average treatment effect

Rosenbaum and Rubin (1983) show that all biases can also be removed by 

conditioning on the scalar propensity score rather than conditioning on the entire 

(possible) vector of pre-treatment variables. Hirano, Imbens, and Ridder (2000) 

(henceforth HIR) show that weighting by the inverse of a non-parametric estimate of the 

propensity score leads to consistent and asymptotically efficient average treatment effect 

estimates. They show that the normalized average treatment effect estimator converges 

in distribution to a normal random variable with mean zero and the semi-parametric 

efficiency bound as its variance. They compare this to the estimator obtained by 

weighting by the inverse of the true propensity score and note that die true propensity 

score estimator is unbiased but less efficient than the HIR non-parametric propensity 

score estimator. However, all o f HIR’s calculations are asymptotic ones. Infinite 

samples, the semi-parametric efficiency bound cannot be reached. This chapter will 

show that in small samples there can be an efficiency gain to constructing an estimator 

that efficiently incorporates some of the econometrician’s auxiliary information about the 

propensity score. This holds true in both experimental and non-experimental studies. 

Higher-order optimality is considered within a given class of estimators. This class will 

be those estimators obtained from a particular set ofGMM moment restrictions. The

2
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estimator imposes a finite amount of additional information from a subset of the pre

treatment variables. This is to be contrasted with the true propensity score estimator, 

which contains no additional information and the HIR non-parametric propensity score 

estimator, which contains an infinite amount of additional information. Optimality in this 

case is defined as minimum mean squared error (MSE).

In what follows, this chapter examines estimation of an average treatment effect 

in the context of a GMM system of moments. The first moment by itself leads to the 

estimator of the average treatment effect when weighting is done with the true propensity 

score. Subsequent moments include additional information stemming from knowledge of 

the propensity score. The question of interest is: Given finite sample size, how many 

auxiliary moments should be included in order to mmimiTe the MSE of the resulting 

estimator? When sample size is large, if all possible additional moments are included, 

the resulting estimator converges in distribution to the HIR non-parametric propensity 

score estimator. Since the HIR estimator is efficient, the econometrician should include 

all additional moments (e.g. use the HIR estimator). However, when sample size is 

small, moment selection becomes an important practical consideration in any particular 

estimation procedure. In this setting, there exists a trade off between the benefit o f the 

information of a marginal moment restriction and the cost of the additional noise created 

by that marginal moment restriction. This is analogous to the MSE test in OLS 

regression. In that setting, one wishes to determine if inclusion of an omitted variable 

lowers the MSE of a parameter of interest. In other words, one wishes to determine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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whether the benefit of inclusion of a marginal variable in terms of lower bias outweighs 

the cost of inclusion of that marginal variable in terms of increased variance.

A higher-order asymptotically optimal moment selection criterion function is 

derived along the lines of Donald and Newey (1999). It is “higher-order” in the sense 

that it is made up of the terms of the MSE that are of order N~z and higher. It is 

“asymptotically optimal” in the sense that criterion function for use in practice 

approaches the true criterion function at a sufficient rate as sample size increases. It will 

be shown that the higher-order asymptotically optimal moment selection criterion 

function derived in this chapter performs very well in the selection of the optimal number 

of auxiliary moments for the GMM procedure, even in small sample sizes.

The GMM model is estimated using the Continuous Updating Estimator 

(henceforth CUE; Hansen, Heaton, and Yaron, 19%). The CUE is a special case of the 

class of generalized empirical likelihood (GEL) estimators (e.g. Qin and Lawless, 1994; 

Imbens, Spady, and Johnson, 1998; Newey and Smith, 2000). It has the nice properties 

of being a one-step procedure, being invariant to how the moment conditions are scaled, 

and having a closed-form solution, making MSE approximations easier. However, this 

benefit does not come without a cost Hansen, Heaton, and Yaron (1996) show that in 

small samples the distribution of the CUE is relatively duck-tailed, even though it is first- 

order asymptotically efficient Given the CUE closed-form solutions to the average 

treatment effect estimator and the Lagrange Multiplier estimator, the MSE of the average 

treatment effect estimator is approximated to the stochastic order N~z (the second order) 

with asymptotic expansions of the two estimators. It is shown through simulations that in

4
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relevant small sample sizes (or larger) calculating the MSE to order AT2 yields a very 

accurate approximation to the true MSE. It is also shown that a higher-order 

asymptotically optimal approximation to the MSE formula performs well in terms of 

choosing the optimal estimator, even in small samples.

The format of the dissertation is as follows. Chapter 1 analyzes the case where 

the propensity score is constant and known, and where the covariate, X , is a scalar. The 

data generating process is that of an experimental setting where treatments and controls 

are assigned sequentially1 (e.g. via a coin flip) and information on a scalar pre-treatment 

variable is obtained. Chapter 2 extends the analysis of Chapter 1 by allowing A' to be a 

D xl vector of pre-treatment variables. The ordering of the higher-order terms of X  and 

its interactions may be an important issue in this case. Finally, Chapter 3 analyzes the 

case where the propensity score is unknown. This data generating process is that of a 

non-experimental setting. Research with this type of data is becoming more frequently 

observed in economics and, thus, examination of this case is valuable.

The format of this chapter is as follows. Section 12 sets up the model and 

discusses previous results and estimators. Section 1.3 presents the GMM framework and 

the estimator of this dissertation. Section 1.4 presents a simple example and evidence of 

an efficiency gain from this type of procedure. Section 1.5 presents the theoretical results 

using the asymptotic expansions. Section 1.6 details the sample approximation to the 

theoretical MSE formula and presents results o f Monte Carlo simulations testing the 

procedure. Section 1.7 examines the properties of the procedure in a “more realistic”

1 Hence, the observations are independent.

5
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setting through simulations with various data generating processes calibrated to the 

experimental dataset of LaLonde (1986). It also applies the procedure to the actual 

dataset, as one would do in practice. Lastly, Section 1.8 concludes.

1.2 Setup of Treatment Effect Models

1.2.1 The Model

Suppose one has a random sample of data of size N  from a population of interest 

For each unit i in the sample, there is ild . data {(Yt, Tt, X t )} where Yt is an outcome 

variable, Tt is a binary treatment indicator, and X i is a scalar pre-treatment variable. AT, 

is assumed to be a scalar throughout the remainder of the chapter in order to focus 

attention on the properties of the method being developed and to abstract away from any 

ordering considerations with respect to power series and interactions2. Thus, the pre

treatment variable and polynomials thereof have a natural ordering as [ x n X*,. . . ,  X *  }.

The case where X i is a vector will be considered in Chapter 2.

For each unit i, 7) €{0,1} where 7] =1 means unit i received the treatment of 

interest and 7) = 0 means unit i was a control. The parameter o f interest is the average 

treatment effect

r = £(r(l)-r(0)), (I)

2 If X  is a vector, all results still hold but the natural ordering is lost and one must compare the MSE of 
various subsets, interactions, and polynomials of X in a less ordered way.

6
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where Y (l) is the potential outcome when assigned to the treatment and Y (0) is the

potential outcome when assigned as a control. The fundamental problem is that of

missing data. Each individual unit / has potential outcomes (1^(1), J' (0)). However,

since each unit either receives the treatment or is a control, the econometrician only 

observes

^ = ^ ( i)-t; + ^ ( o)-( i -7 ; ) .

1.2.2 Previous Results and Estimators

Suppose assignment to treatment is random as is the case in experimental studies.

In this case

(i;(i),i;(o))i7;. (2)

Given that the potential outcomes are independent of treatment status, the simple 

difference-in-averages estimator of r ,

I  (  X  \' S  \  I  f  .V \

r, = -y0 = ——--------------------
r*\ r*|

is unbiased3. In non-experimental studies, it is typically believed that assignment to 

treatment is not independent of treatment status. Thus, r , is biased. Given data on pre-

treatment variables upon which selection is based, the following identification 

assumption is made.

(3)

7
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ASSUMPTION 1

(t;(i).i;(o))-L7;iAf,

This is the well-known Unconfoundedness assumption or the Selection on Observables 

assumption of Rosenbaum and Rubin. Given this assumption, one can construct an 

unbiased estimator of r  because

r = £(/(!)-r(0))

= £ * ( £ (1' ( ,) -1 ' ( ° ) l * ) )

= £, (£(T(1) | r - I ,  Jf)-£(r(D)|r-0, AT))

= £ , ( £ ( i ' | r = i , x ) - £ - ( j r | r=o ,Ar)) .  <4>

Both the first and second terms of the inner expectation are directly estimable with a 

variety of methods. The outer expectation then averages these results over the 

distribution of X . Hahn (1998) proposes two estimators of equation (4). For both 

estimators, the outer expectation becomes a sample average. For the first estimator, the 

inner expectation uses the observed value of Y, and the non-parametrically imputed

missing value ( l - ^ ) - £ (  lf| Tt = 1, X t) + Tt -£(1^1 Tt = 0, Xt ). For the second estimator, 

the inner expectation uses both of the non-parametrically hnpnt«H values,

E( X\T, =1*^0 and E(Yi \Ti =0,jf ,) .  Hahn shows that both of these estimators are 

efficient in the sense that they reach the semi-parametric efficiency bound.

3 HIR (2000) shows that Ts is still not efficient, given information on the pre-treatment variable X t.

8
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In practice, direct adjustment on X  may not always be practical, depending on its 

dimensionality (assuming A!" is a vector for the moment). As a possible solution to this 

problem, Rosenbaum and Rubin (1983) show that Unconfoundedness implies

(r(i),i;(0))ij:ip(Ar,),

where p( X, )  =Pr(7' =1| X t) is the propensity score, the probability of treatment

conditional on X t . This result implies that an unbiased estimator of r  can be 

constructed with direct adjustment on the propensity score.

t = e(r(i)-y(o))

= * , (£ ( 1 ' ( 1 ) - 1 ' ( 0 ) I p ( JO))

=£,(£(y(i)|r=i,p(Jr))-£(i'(o)|r=o,p(jf))) 

- £ , ( £ ( i ' | r - u p ( j r ) ) - £ ( i ' | r = a j»(jr))).

The two terms of the inner expectation are still directly estimable, but they are 

conditioned on the scalar propensity score rather than the (possible) vector X . Hahn 

(1998) shows that knowledge of the true propensity score is ancillary for estimation of 

average treatment effects. In other words, the semi-parametric efficiency bound is the 

same whether the true propensity sane is known or unknown. This is an asymptotic 

result Chapter 3 will show through simulations that in finite samples the propensity 

score is not ancillary for estimation of average treatment effects.

Rosenbaum (1987) and Hahn suggest that an average treatment effect estimator 

that conditions on the true propensity score, as in equation (5), will not reach the semi-

9
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parametric efficiency bound. Hahn and HIR both provide examples where this holds 

true. The intuition is that conditioning on an estimate of the propensity score controls for 

pre-treatment variables, which affect the propensity score and the outcome, better than 

the true propensity score. This seemingly counterintuitive result is due to the fact that the 

estimated propensity score compensates for sample divergences from true probabilities4. 

As an example, suppose one has data from an experimental study of two hundred 

individuals. The probability of selection for treatment is .5 and there is information on 

one covariate, sex. The true population distribution of males and females is 50% for each 

and there are 100 males and 100 females in the study. Even though assignment to 

treatment is random, suppose that out of the 100 treated individuals, 90 end up being 

males. Thus, out of the 100 controls, 90 end up being females. Use of the true 

propensity score estimator, in this case f , , would tend to yield the average outcome on 

treated males minus the average outcome on control females. If there is a significant 

difference in the average treatment effect for males and females, this estimator will yield 

terribly misleading results. Adjusting for the non-parametric propensity score, .9 for 

males and .1 for females, will effectively compensate for these sample divergences from 

true distributional probabilities.

Rosenbaum (1987) and HIR discuss an alternative to direct adjustment on the 

propensity score. They show that an estimator that weights observations by the inverse 

of the true propensity score is unbiased for r . Namely,

4 See Rosenbaum (1987).

10
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* _  I V
T'p N "  iV 1*1

f * - ' ,
p{*i) l - p { x t)

is unbiased where p (X,), the true propensity score, is known. Finally, HIR show that

' yrh yr(

(6)

1 v

\ p U )  i - p {x,) j

is consistent for r  and, unlike f,p, it reaches the semi-parametric efficiency bound

asymptotically, where p ( X t) is a non-parametric estimate of the propensity score. Thus,

both i,p and i HlR asymptotically remove all the bias associated with selection on the pre-

treatment variable X , but f HIR is more efficient As seen in the example above, this 

efficiency result is true even in experimental studies when bias due to self-selection is not 

an issue.

1.3 GMM Framework

In this section, the general specification for the solution framework is laid out 

The estimation problem is modeled within the Generalized Method of Moments when the 

true propensity score is known. Instead of weighting by the non-parametric propensity 

score, additional information is incorporated though auxiliary moment restrictions that 

capture the full effect of the non-parametric propensity score when the full set is 

employed. It is shown that the true propensity score estimator can be achieved by one 

unconditional moment restriction. Then, it is shown that an estimator with identical 

asymptotic properties to rHtR can be achieved by adding one conditional moment 

restriction that reflects the econometrician’s knowledge of the propensity score. The full

11
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inclusion of this conditional moment restriction achieves the same informative value as 

weighting by the non-parametric propensity score. Under suitable regularity conditions, 

this estimator can be achieved by including an infinite but countable number of 

unconditional moment restrictions. Next, the form of the small sample estimator, which 

uses a finite number of these auxiliary unconditional moment restrictions, is discussed. 

Finally, the closed-form solution of the average treatment effect estimator is solved.

1.3.1 Moment Restrictions and Relation to Previous Work

Given the setup above, the estimation procedure is framed in the context of a 

GMM system of moments. In particular, let

where

yrx(y,tjc,  r)  = y - t  >"(1-0
p ( x ) 1 - p ( x )

- r  - V  - r ,

' - p W  1
x ( , - p ( x ) )

x *( <- p( x ) )
s

E (y{y , t ,x ,  r ))  = 0,

12
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where p{x)  is the true propensity score. In this chapter, the propensity score is assumed 

to be constant ( p ( X )  = p)  and known5. It will be seen below that as K —» at a 

suitable rate, y/2 (t, x ) accounts for the conditional moment restriction 

E [ T - p ( X )  | AT) = 0 , reflecting one’s knowledge of the propensity score. Let 

i lf(y,trx,r)=\i / , yfl ( y , t vx,r)=iffi ,aniii f2(t ,x)=yf2 for simplicity. Also,let 

M  = K + 2 be the number of moments of ip . Notice that this framework embeds the true 

propensity score estimator. If one lets ip =ipn there will be one moment restriction and 

one parameter to be estimated. Taking the sample average yields

yrt, — T = 0
\ p ( x t) 1 - P i* ' )  ,

Solving this for r  yields the true propensity score estimator, rlp.

The motivation for the auxiliary conditional moment restriction comes from MR, 

Chamberlain (1987), and Hellerstein and Imbens (1999). Hellerstein and Imbens show 

that efficiency can be improved by including auxiliary moment restrictions, iff2, that are 

correlated with the primary moment restrictions, yrx, even if iff2 does not include any 

unknown parameters6. Chamberlain shows that a conditional moment restriction of the 

form E ( Y —f i X \ X )  = 0 implies £ (a(Ar) ( T - ^ A ' ) ) = 0  for any function a . This

s p ( X )  is written instead of p  in the GMM model to reinforce that all of the theoretical results do not 
hinge on the propensity score being constant.

6 It is only a function of T  and X  in our case.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

unconditional moment restriction is satisfied for any a such that E^ a( X) 2 )<«» with an 

infinite but countable number of moment restrictions based on a power series o f X ,

{ Y - P X )  ) 
X ( Y - P X )  
X 2( Y - p X )

=  0 .

This countable number o f unconditional moment restrictions fully accounts for the 

information contained in the conditional moment restriction, provided some regularity 

and growth rate conditions hold. Donald, Imbens, and Newey (2001) discuss the 

necessary regularity conditions and provide the maximum and minimum growth rates for 

Empirical Likelihood (EL), GMM, and IV estimation while using splines, power series, 

or Fourier series of X .

HIR further motivate the conditional moment restriction in an example with a 

constant, known propensity score, p { X)  = p , and a single binary pre-treatment variable,

X . In their example, they show that inclusion of the two auxiliary moment restrictions 

implied by the two-point support o f X  results in obtaining the efficient HER. non- 

parametric propensity score estimator, z HlH.

PROPOSITION 1 .1 : Suppose Assumptions I - 4  (2 —4 listed below) hold. Let p ( X )  

be a general function o f a discrete vector X . The estimator obtained by solving the fu ll

14
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set7 o f auxiliary moment restrictions is the HIR non-parametric propensity score 

estimator, XmR.

Proof: See Appendix.

Thus, with discrete X , the estimator obtained from the GMM framework is 

asymptotically efficient and is, in fact, the HIR estimator. The above proof solves with 

the EL estimator rather than the CUE. However, since this example deals with 

asymptotic efficiency, this point is moot because both estimators have the same 

asymptotic distribution8. For continuous X , it is known that a general continuous 

distribution can be approximated arbitrarily closely by a discrete multinomial 

distribution9. Because of this, when X  is continuous the estimator obtained as J f —» »  

in the GMM framework will have the same properties (consistency and asymptotic 

efficiency) as the HIR non-parametric propensity score estimator, i HtR, although the two 

need not be identical This is due to two factors: the fact that a general continuous 

distribution can be approximated arbitrarily closely by a discrete multinomial distribution 

and the fact that as K —> at a suitable rate, the auxiliary unconditional moment

restrictions fully account for the conditional moment restriction reflecting the auxiliary 

information about the conditional expectation of T .

7 If X  has J  support points, then J  auxiliary moment restrictions compose the full set.

* In this example, it was easier to solve with the EL estimator.

9 See Chamberlain (1987).
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It has been shown that the true propensity score weighted estimator is unbiased, 

but inefficient. It has also been shown that there can be an efficiency gain from taking 

account of additional information contained in the y/2 moments. The HIR estimator 

takes full account of this information and has been shown to reach the asymptotic 

efficiency bound. However, this estimator (and close approximations thereof) would not 

be optimal in small samples. K  would be too large relative to sample size and inversions

of W2V 2 would be difficult to impossible. In other words, the additional noise from the 

marginal auxiliary moment restrictions would be outweighing the gain of being closer to 

a perfect representation of the conditional moment restriction, E (T  -  p ( X )  |Ar) = 0.

This suggests that in small samples there can be an efficiency gain to moving away from 

the true propensity score estimator and including additional moment restrictions until the 

efficiency loss effect begins to dominate the efficiency gain as what is similar to the HIR 

estimator is approached.

1.3.2 Estimation Procedure with the CUE 

A s s u m p t i o n  2

The support o f  X  is a compact interval on R .

A s s u m p t io n  3

£ ( r ( l ) 2) < ~  and £ ( t ( 0)2) < ~ .

16
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A s s u m p t i o n  4

0 < p^< p {X )  <~p <\ where p ( X )  = Pr(T = \ \ X  = x ) .

Assumption 2 is necessary for the regularity conditions of the power series of X  

to hold and for the derivation of the asymptotic expansions of the average treatment 

effect estimator. Assumptions 3 and 4 are required for the derivation of the MSE 

properties of the average treatment effect estimator.

Given the setup above, the GMM moment conditions are solved using the CUE. 

As mentioned previously, the CUE is a special case of the class of generalized empirical 

likelihood (GEL) estimators (e.g. Qin and Lawless, 1994; Imbens, Spady, and Johnson, 

1998; Newey and Smith, 2000). It is obtained by simultaneously minimizing the GMM 

criterion function (including the weight matrix) with respect to r . In other words

Newey and Smith provide the first-order conditions for GEL estimators. With the 

moment restrictions of this paper, their first-order conditions turn into10

zCVE = argm in — ^ y r {Z) —

' 'Z V u i l -X V z i )
\

i = 0 , (8)

10 The CUE is a special case in which Newey and Smith’s p  (v) function is a quadratic. Specifically, let

17
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where A is a (A f- lx l)  vector of Lagrange Multipliers11. As mentioned earlier, the 

CUE procedure has the three nice properties of being a one-step procedure, being 

invariant to the scaling of the moment conditions, and having a closed-form solution. 

Using a one-step procedure is nice because it removes any arbitrariness associated with 

choosing a consistently estimated weight matrix. The closed-form solution will be

extremely helpful in Section 1.5 when asymptotic expansions of A and f  are derived. 

To solve using the CUE, one simultaneously solves the M  equations of (8). This yields

approximate MSE criteria for f  will be derived using the leading terms in asymptotic 

expansions of these two estimators.

(9)

( 10)

Equations (9) and (10) contain the closed-form solutions for A and f . In Section 1.5

1.4 A Simple Example

Let

Yt = .5+27) + 0 ^  +£,,

11 A isof dimension M  —  1 because the Lagrange Multiplier for the yf, moment restriction is equal to 
zero so it drops out of all equations and the estimation procedure.

18
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P(X .)  = % -

In this data generating process, assignment to treatment is random and the treatment 

effect is constant for all individuals. Therefore, the true average treatment effect equals 

the individual treatment effect, r  = 2 . HIR have shown that f rp is asymptotically 

inefficient It has also been suggested that the HIR non-parametric propensity score 

estimator is not the optimal estimator in small samples. In Figure 1.1, P2 =1 and N = 25. 

The true MSE of f  is calculated by taking the sample MSE of 10,000 estimates o f r  and 

plotting these MSEs over a range o f K  values. It can be see that the true propensity 

score estimator, f lp (henceforth called the K  = -1  estimator), performs particularly

poorly with a MSE of .594. It is straightforward to show that when the propensity score 

is constant, the GMM estimator that sets K  =0 corresponds to the simple difference-in

averages estimator, f  , .  This estimator is the most commonly used unbiased estimator in 

experimental studies. It has a MSE of .220. It contains a 63% MSE reduction relative to 

the true propensity score estimator of £ = - 1 .  The intuition behind this result is 

relatively simple. The difference- in- averages estimator corrects for sample divergences 

of the empirical selection probability from the true selection probability due to the 

(assumed) sequential selection design of the experiment. If the experiment has a non

sequential selection design, the true propensity score estimator will equal the difference- 

in-averages estimator. It is worth noting that the MSE reduction of K  = 0 relative to

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

K  = -1  was in the 60% -  80% range for all data generating processes examined12. The 

estimator with K  = 1 has a MSE o f .177. It contains a 20% MSE reduction relative to the 

difference- in- averages estimator (K  = 0 ). This MSE reduction is due to the fact that the 

x ( t - p )  moment corrects for sample divergences of the empirical distribution of X

from its true population distribution for the treated and for the controls. The relative 

importance of this correction depends upon the magnitude of the effect of A!- in the 

outcome equation (in this example the effect is /?2)13. Finally, the estimator with K =  6 

has a MSE o f233. This estimator can be thought ofas being similar to the HIR non- 

parametric propensity score estimator due to the fact that it incorporates a large amount 

of knowledge of the propensity score in the form of auxiliary moment restrictions. The 

K = 1 estimator contains a 24% MSE reduction relative to the K  = 6  estimator. This is 

evidence that, due to the small sample size of N = 25, the noise created by the addition of 

moments past K  = 1 is significant, and the relative benefit of these moments is small

Figure 1.2 shows the MSE graph from the same data generating process, except N 

= 150. In this case, again there exists a 63% MSE reduction in going from the K  = -1 

estimator to the K  = 0 estimator. There exists a 24% MSE reduction in going from the 

K =0 estimator to the K  = 1 estimator (similar to when N = 25). Lastly, there exists 

only a 2% MSE reduction in going from the K  = 6 estimator to the K  = 1 estimator.

12 Even when fi2 =0,Var[e) = 0 , andN = large.

13 Under a general data generating process or a general p  ( X  ) ,  this moment will partially correct for
sample divergences. Higher-order moments (of X ) may be optimal ifhigher-ordcr terms of X  are strong 
in the outcome equation or enter the propensity score.
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Thus, i lp and i s remain significantly sub-optimal and die efficiency loss from using a

large K  decreases. This is evidence that f HlK 14 will be optimal in large samples since the 

marginal cost of noise from marginal moments decreases with sample size.

Figures 1.3 and 1.4 show MSE plots similar to Figures 1.1 and 12 except /3, has 

been reduced to P2- .3 .  Thus, the effect o f X  in the outcome equation has been 

reduced. Therefore, all else equal, the benefit from auxiliary moments containing powers 

of X  should be reduced as well. In Figure 13, N = 25 and the optimal estimator is the 

K  = 0 estimator. The K  = 0 estimator contains a 67% MSE reduction relative to the 

K  = -1 estimator. The MSE of the K  = 0 estimator is .173, while the MSE of the K  = 1 

estimator is .179. This represents only a 3% MSE reduction in the AT =0 estimator 

relative to the K  = 1 estimator. This is due to the fact that P2 = .3 is small enough in 

magnitude such that the optimal K  is K  = 0. However, fi2 is close to the critical value 

where the optimal K  becomes AT = 1. The MSE reduction of the optimal K - 0  

estimator relative to the K  = 6 estimator is 25%. This is slightly larger than the MSE 

reduction of Figure 1.1 due to the reduction in the benefit o f auxiliary moments 

containing powers of X .

Figure 1.4 plots the MSE graph for P2 = .3 and N = 150. Now, the K  = I 

estimator becomes optimal. The increase in sample size was large enough to mitigate the 

effect of the additional noise of the AT = 1 moment Thus, the optimal estimator switched 

from the K = 0 to the K  — \ estimator. Again, there is a large MSE reduction in going

14 Or an estimator with large K .
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from the K - - 1  estimator to the K = 0 estimator, 68%. There is a 4% MSE reduction 

going from the K  = 0 estimator to the K  = I estimator. Finally, there is a 5% MSE 

reduction in going from the K  = 6 estimator to the K  = I estimator. 5% is relatively 

small, due to the large sample size. However, it is larger than the MSE reduction of 

Figure 1.2 (2%) again due to the reduction in the power of X  in the outcome equation.

When the propensity score is constant and the outcome equation is linear in X  

with no higher-order polynomials, the maximum optimal K  is K  = I . This is due to the 

fact that if the linear term X  is the highest-order polynomial entering the outcome 

equation, there can be no further gain once X  is accounted for in the auxiliary moments. 

Figures 1.5 and 1.6 show results where the optimal K  can be greater than one. In this 

case, the propensity score is a logit probability, including a linear and quadratic term of 

X . Figure 1.5 shows that the optimal estimator is the K = 1 estimator when fi2 = 1. 

Figure 1.6 shows that when P2 is increased to (i2 = 8 , the K  = 3 estimator becomes 

optimal.

The simple example of this section brings to light a few important points. One, 

the true propensity score estimator performs extremely poorly for all data generating 

processes. It has a MSE that is at least 250% greater than the optimal estimator. Two, 

when X  is strong enough in the outcome equation, a non-trivial MSE reduction15 can 

obtain by incorporating additional auxiliary moments {K  = 1 in this case) relative to the 

difference-in-averages estimator (K  = 0). Three, when sample size is small enough, the

15 20% - 24% in our examples.
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optimal estimator can contain a non-trivial MSE reduction16 relative to the large K  

estimator, which is similar to the HIR non-parametric propensity score estimator.

1.5 Asymptotic Expansions

1.5.1 Higher-order MSE and S(K) formulae

In this section, asymptotic expansions for the two estimators, A and f  are 

derived. This is done by using methods similar to Newey and Smith (2000) and Donald

and Newey (1999). First, the asymptotic expansion for A is derived. Then, the leading 

terms in the asymptotic expansion of A are used to derive the asymptotic expansion of 

f - r .  f - r  can be written as the sum of the leading terms of its asymptotic expansion17. 

Thus, the approximate MSE of f  is the expectation of the square of these leading terms.

RELEVANT NOTATION

L yr2IJ = /*  element of iff2i

ii. Q = £ ( ^ 2i')

iii. a>lf = (/, j)  element of £2

iv. a)~l =(», j)  element of flT1

v -  h = - S ( v ^ J - q )n , \ I

16 24% - 25% in our examples.
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vi <T^: = £ ((K ,-r)v r2i)

vii. Ovv,] -  f  element of ovY,

viii. <j v2 = £ ( ( ^ - r ) 2)

With the solution for r  in equation (10), the goal is to derive its MSE for various 

K . This will allow the optimal K  to be chosen. However, given the functional form of 

f , derivation of the MSE analytically is not possible. Thus, asymptotic expansions of 

the two estimators, A and f , become useful There are three relevant expansions of the 

components of A .

ASYMPTOTIC EXPANSION 1.1: Suppose Assumptions I —4 hold.

(0 j'L'f'»=Op(N~/z)’ < “ >

(ii) H = ^ X ( ^ 2; - n )  = 0 , ( ^ ) ,  (12)

(iii) 'j fZ V iV *  = ~  ^ 1HS2"1 + ST1 HOT1 HS2~‘ + op (JV"‘), (13)
N \

Proof: See Appendix.

LEMMA 1.1: Suppose Assumptions I —4 hold.

17 The terms of high order of convergence (or low rate of convergence).
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Proof: See Appendix.

Next, asymptotic expansions for the three factors of f  - r  are derived This is done using 

the result of equation (14).

r - r  =

(15)

A s y m p to tic  E x p a n s io n  l .2: Suppose Assumptions 1 — 4 hold.

(0 j l ( V<-T)=Op(N-y>), (16)

(“) ^ S ( ^ - r ) V 2 i= ^ r:+ o p( isr ^ ) ,  (i7)

(“0 ^ r S ( K - r f ' W i ,  =A'<TKri + * Vr+SVr +op ( AT^), (18)
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(iv) j t e M v , ) ] "  - i + i f - l 5 > ,  V ( « * ) .  (19)
* I \ I

where RSt =
N  ,

SSr = -

Proof: See Appendix.

To calculate the MSE of f , the closed-form solution for f  —x is decomposed into 

the sum of terms o f stochastic order N ~ ^ , N~l , and N ~ ^ . This is done by simplifying 

the closed-form solution for f  -  r  using the asymptotic expansion for A [equation (14)] 

and the asymptotic expansions for f  - r  [equations (16) -  (19)].

THEOREM 1.1: Suppose Assumptions 1 -4  hold.

r  ~  T =  Tsx + 5 2  ■ * '^ r  i $  2  i  + ^ r 2  j  |  N ^  j ,

where

(20)

Tff2 — ~OyWl A
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.̂V2 ~ ~

5 v ,= -

f  1 V
*  ? r * 1\ 1 J

SII-1r i

v '

■ ^ 2 > i .  n r 'H O - 'H a - 'o ^  = o , ( jv # )

*̂ .V2 —

*̂ Y3 —

^ 5 > > . ) Q_,ffQ"  ( i s « ^  - < v ,  ) ] = 0 , ( ^ 1

V J \  * J \  ' J

SNt= - a ^ S l - 1

Proof: See Appendix.

Typically, when approximating a statistic using asymptotic expansions

econometricians use all terms of the two highest orders (N ^ 1 and N~l in our case). For 

MSE approximations, they typically keep the terms of the square of the highest order and 

higher (AT1 AT1 = N~2 or above in our case). Therefore, using (20), the approximate 

MSE of f  is calculated using the components of this MSE that are of stochastic order 

N~2 and above. Hence, the interactions of Rs. with 5V. and the interactions of Sv. with 

itself are ignored for these are of stochastic order lower than N~2.

COROLLARY 1 .1 :  The higher-order MSE o f  i  is:
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M S E ( t )  = e ( { t  - t ) 2 ) =  £ ( (  rv, + 5  2 + %, + $  2 + $ ,  + $ ,  + 5,3 +  SV4 )2) (21) 

= E ( r vl2) + £ ( r iV22) + £ (* VI2) + £ (£ v22)+ 2£ ( r v, r v2)

+2£(rvi£ vl) +2£(rv,£ vl) +2£(7;,£n2) +2£(rv2£ v2) + 2 £ ( / ^ .^ )

+2£( 7y|£Vi) +2£( ^ 2SV1) +2£( 7 ,̂£v2) + 2 £ {TS2SN2)

+2£( TNlSNJ) +2£(rv2SW3) +2£(7^,SV4) +2£(7^2SAr4).

P ro o f: See Appendix Note: All of the expectations above are derived in the appendix

Notice that all o f the components making up the MSE of f  in equation (21) are of

stochastic order AT2 or higher. Also notice (in the appendix) that the £^TV12 j term does

not depend on K  and can therefore be excluded from the criterion function without 

affecting the optimal choice of K . This leads to the following definition of the criterion 

function which, when minimized, corresponds to mmtmi7ing the MSE

DEFINITION: The higher-order MSE criterion Junction o f i  is:

5(£:) = £ (rAf22)+ £ (£ vl2) +£(/?V22) +2£( TNlTM2) (22)

+2£( TSIRSI) +2£ ( r ^ , )  +2£(Fv1£ V2) +2£(r„2£W2) +2£( )

+2£( TpuSfd) +2£( Tff2S/(l) +2£( TslSN2) +2£(7^2SW2)

+2£( TslSs3) +2£(r^2SW3) +2E(TslSMA) +2E(T„2Ss t ),
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Figures 1.7 and 1.8 show true MSE plots along with MSE plots derived from the 

higher-order formula above. The true MSE is derived in the same way as in Section 1.4. 

The higher-order formula MSE is derived from true variances and covariances, which are 

estimated as sample variances and covariances from a very large sample size of 100,000. 

From Figure 1.7, it is seen that the higher-order formula provides a tight fit to the truth, 

even with a small sample size, N -  25. The importance of the second-order terms can 

also be seen in this figure. The dashed and dotted line is the MSE obtained from only the 

first-order terms of the formula. The first-order formula is always decreasing as K 

increases. It provides an accurate approximation only u p t o £ = 0 o r £  = l,  then 

diverges significantly after. From Figure 1.8, one can see that the formula works 

extremely well in larger sample sizes, N = 150 in this case. Also, notice that the first- 

order formula provides a relatively tight fit here as well. This is expected and is due to 

the fact that with larger sample sizes the lower-order terms are very close to zero. Thus, 

the lower-order terms are non-trivial with respect to the performance of the higher-order 

MSE formula and, when included, the approximated MSE formula yields a very tight fit 

to the true MSE. Plots containing the true S(AT) and the higher-order formula S(K)  are 

identical to the MSE plots except a constant is subtracted from the MSE plots such that 

S(-1) = 0.

1.5.2 Higher-order Asymptotic Optimality

In this section, the properties of the MSE criterion function, S( K)  are 

considered. The rule for selecting K  is defined and it is shown that this rule is higher-
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order asymptotically optimal. The analysis follows that of Donald and Newey (1999) and 

Li (1987).

DEFINITION: Let S ( K)  be the sample analog o f S(K) .  It is composed o f sample 

quantities £’(•), which equal the sample analog o f E{-).

The goal is to choose K  such that the MSE of f  is minimized. This corresponds 

to choosing K  such that S ( K)  is minimized. Thus, for use in practice, the optimal 

choice for the auxiliary moment restrictions is defined to be

K  -  argmin S ( K ) .
K

When A" is a scalar, this minimum is relative to an index set of AT values. In Chapter 2 

when X is a vector, the definition of the set of possible K  values may become an 

important consideration. Donald and Newey (1999) make the following definition.

D e f i n i t i o n : A method o f  selecting K  is defined to be "higher-order asymptotically 

optimal with respect to the criterion S ( K ) "  i f  it can be shown that:

S (£ ) ,
  —   >1
inf S{K)
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The term “higher-order” derives from the fact that the MSE formula is a higher-order 

approximation to the true MSE, and hence the S( K)  formula is a higher-order 

approximation to the true S(  K ) .

LEMMA 1.2: Suppose Assumptions 1 - 4  hold.

6 V2- a  ;  = 0  p[n '& Y  

ar'-arl=o,(N~xy

Cov({K )-Cov({Vt - T fy w V to V v  1 = 0 ^ ^ ) ,

CoviVi+VuiVuVv ) -C o v (v 2ipiir2ll, v 2llv 2iJ) =Op( AT-*), 

Cov((yt - t )VuA Vi ~ r ) ¥ 2v)-Cov({Vt -T)\if2lJ) = Op ( ^ ) ,

)-Cov(ilr2il,yfu ¥  2#) = Op (A T ^), 

-*)Vv,)-C<” (V2,*{K-*)Vu) = 0 ' ( N ~*)'

cZv({Vt ~T) ,¥z,¥z9) -  Cov((F; - r )  Wz^Wza) = 1Op ( N & ),
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Cov(Vl - T , ( V - T ) V l i ) - C m (V , -T , (V , - t )Vai) = Ol,(N-%),

Proof: See Appendix.

The estimated variances and covariances above are sample analogs to the true variances 

and covariances. Given Lemma 12, the higher-order asymptotic optimality of the

criterion function S (/f)  can be proven.

THEOREM 1.2.1 Suppose Assumption 5 holds. The rule “select the value o f K that 

minimizes S { K ) ” is higher-order asymptotically optimal with respect to the true 

minimization criterion S(K) .

Proof: See Appendix.

1.6 Monte Carlo Simulations with One Covariate

The previous section presented simulation evidence of the goodness-of fit of the 

higher-order MSE approximation formula and, subsequently, the higher-order criterion

function, 5  (AT). It also showed that the criterion function for use in practice, S(K) , i s

higher-order asymptotically optimal with respect to S( K) .  The following two sections

provide evidence o f the performance the GMM procedure and S( K)  with actual finite 

sample datasets. This section examines the performance of the procedure relative to data
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generating processes similar to those of Sections 1.4 and 1.5. The procedure is executed 

for 1,000 different Monte Carlo samples. The distribution of the optimal K , K ,  over 

these 1,000 samples is plotted and analyzed. Also, the mean of S( K)  over the 1,000

samples is plotted and compared to the true S(K) .  The two are not convergent for all K

values18, however their minima tend to be the same K  value. This is the most important 

property with respect to optimal selection of K.

Figures 1.9 and 1.10 plot results for the data generating process where 

_y = .5+ 2t+ x  + Atx + e and N = 25. All other parameters are the same as they were 

previously. Note that an interaction term has been added, however, since X  is already 

“strong’' in the outcome equation, it doesn’t affect the optimal K . Inclusion of this 

interaction term affects the graphs in a trivial way. Figure 1.10 shows that the optimal K 

value is K  = 1. Also, relative to K  = -1 , K  = 0 , and K  = 6 , the K  = 1 estimator 

contains a significant reduction in the value of S(K) .  Accordingly, the PDF of the 

optimal K  distribution has a relatively tight fit around its mode at K - 1 with a value of 

close to .4. The right tail of the distribution tends to be thicker due to the fact that the 

true S(K)  is closer to the optimal S(K)  for K  values greater than K - 1  versus those 

less than K  = 1. Also, AC = —1 is never chosen. This is a nice result given the estimator’s 

high MSE. Figure 1.10 shows that the mean of S( K)  is similar to the true S( K)  and 

their argmin is the same.
JC

'* As sample size increases, the two tend to converge.
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Figures 1.11 and 1.12 plot results from the same data generating process except N 

= ISO. In this case, the K  = 1 estimator is still the true optimal estimator. Also, there 

stQl exists a significant S( K)  reduction for the K  = 1 estimator relative to the K  = - l  

and K  = 0 estimators. However, the significant difference between this data generating 

process and the previous one is that the S(K)  reduction for the K = 1 estimator relative

to the K  = 6 estimator is small, approximately 2%. Therefore, one would expect the 

PDF of the distribution of optimal K  values to have its mode at K  = 1 and be extremely 

thick-tailed to the right Figure 1.11 shows this to be exactly the case, except technically 

the mode of the distribution is at K  = 6 . There exists a local maximum at K  = 1 with the 

global maximum at K = 6 . This is due to the fact that the MSEs are so close together 

and the sample size is large, so there is little difference between the K  = I through K =6 

estimators. It is also readily observed that the K  = -1 and K  = 0 estimators are never 

chosen. This is not surprising and rather intuitive given the significant divergence in 

MSE of the two estimators from all other estimators with higher K  values. It is 

interesting to note that the commonly used difference- in- averages estimator would be a 

very poor estimator to choose in this case, and the procedure never chooses it! Finally, as

expected, Figure 1.12 shows us that the mean of £ (/f) tends to converge to the true 

S(K)  as sample size gets large.

The results of this section show that the procedure performs relatively well for the 

data generating processes considered. All of the results conformed to basic underlying
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intuition. Next, “more realistic” data generating processes will be considered. They are 

based off of the empirical distribution of a subset LaLonde’s experimental dataset (1987).

1.7 Application to Experimental Data of LaLonde (1986)

In this section, the GMM procedure is applied to various calibrated data 

generating processes o f the LaLonde (1986) experimental dataset and then to the actual 

dataset itself. The data generating process is calibrated to the empirical distribution of 

the relevant variables in this dataset The results are fundamentally and intuitively 

similar to those of Section 1.6, however they should be more credible given that the data 

generating process is more similar to a real life data generation mechanism.

The dataset used in LaLonde’s paper was gathered in the 1970’s by the National 

Supported Work Demonstration (NSW). This was a temporary employment program 

designed to help disadvantaged workers by improving their job skills. In this 

experimental study, applicants were randomly assigned to either treatment or control 

status. Pre-treatment data was collected and the applicant’s earnings were monitored 

over the next few years. Table 1.1 shows die sample means and standard deviations for 

the outcome variable (Earnings in 1978), the treatment variable, and all pre-treatment 

variables o f a random subset o f the NSW AFDC participants of LaLonde’s dataset 

Means and standard deviations are also shown separately for the treated and for the 

controls. Since selection into treatment status was truly random, the sample means and 

standard deviations of the pre-treatment variables (Earnings in 197S and below) should 

be similar and non-statistically different from each other. This is observed to be the case.
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Table 12 shows the OLS results when Earnings in 1978 is regressed on the treatment 

variable and all pre-treatment variables. The results are shown for non-standardized 

regressors and standardized regressors. It has been shown that the magnitude of a pre- 

treatment variable in the outcome equation is important with respect to moment selection. 

The standardized regression results are useful in gaining intuition on this magnitude since 

all regressors have identical, unit variance. One can see that Earnings in 197S is the 

fourth “strongest” pre-treatment variable according to this specification. It was chosen as 

the scalar covariate in this chapter because in any earnings study it seems sensible to 

control for current earnings.

A Monte Carlo dataset is calibrated to the LaLonde dataset according to the 

following rules. Let the observed scalar covariate x L be Earnings in 1975. Let ( yL ,tL) 

be the observed outcome vector and treatment vector from LaLonde’s dataset, 

respectively. Let the propensity score equal the empirical mean of the treatment vector 

1 <vtL, p =  — y \ t u = .416. Run the OLS regression of

yL =  A > + Pa  +  P a  + Pa a  + £  •

Let /3 be the resulting vector o f parameter estimates and a 2 = -  4 ) ' Draw x

from the empirical distribution of xL. Draw t from a BIN{\,p)  distribution. Draw v 

from a N (  0,ct2) distribution. Finally, let

y ^ f a + P t  + f a + P j x + v .
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In what follows, this calibration routine is used to examine the properties of the 5 (A ) 

criterion. The simulated sample size is adjusted from N = 25 to N = 150 to N = 445 

(LaLonde’s sample size), and the values are adjusted to see how they affect the

graphs.

Figures 1.13 and 1.14 show a PDF graph and 5(A ) plot fin:a simulation sample 

size ofN  = 25. Notice that the true 5 (A ) reaches a minimum at A = 0 and the PDF of

die optimal A values obtains its mode at A = 0 with a frequency of approximately .65. 

Until now, the choice set o f AT has been allowed to extend to a maximum of A = 6. 

However, with the current calibrated data generating process the maximum A value had 

to be restricted to something smaller. This is solely because the Earnings in 1975 

variable is 65% zeros. In practice, if one of the 1,000 fake datasets has an x  with a large 

amount of zeros, then x  will be close to a linear combination of its powers and the 

routine will fail or return NaNs. The more powers of x  allowed, the more common this 

occurrence will be. In contrast, the larger the simulated sample size, the less common 

this occurrence will be. Therefore, die maximum A value is restricted to A = 2 when N 

= 25, AT =4 w henN = 150,and A =5 whenN = 445.

Figures 1.15 and 1.16 show a PDF graph and 5(A ) plot for a simulated sample 

size ofN  = 150. The true optimal A value is A = 1. However, the mode of the PDF of 

optimal A value is at A” = 0 . It appears as if the procedure is selecting a slightly sub- 

optimal A . This is because the true 5 (0 ), 5(1), and 5(2) are all within .7% of each 

other. The frequency of the A = 0 estimator is about .47 while the frequency of the
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K = 1 estimator is about 3. Each is extremely close to being optimal Hence, if two K  

values are very close, the S( K)  criterion seems to select the smaller one. Figures 1.17

and 1.18 show the same types of plots, except ( /j,, /J3) has been doubled. The intuition

behind this is that by making X  stronger in the outcome equation, the K  = 1 estimator 

should become relatively more efficient than the K  = 0 estimator and the PDF plot 

should reflect this. In fact, it does. The PDF is now tighter and the mode is at AT = 1 with 

a frequency of approximately .5.

Figures 1.19 and 1.20 show the two plots when N = 445. Remember, when N = 

25 the true optimal K  = 0 and when N = 150 the true optimal K  = 1, but marginally. In 

increasing sample size to 445, one would expect the true optimal K  to more clearly be 

K  = 1. The graphs show this to be true. There is now a 1.1% difference between the true

5(0) and 5(1). There still exists a significant selection of AT = 0 , but the mode of the

PDF is at AC = 1 with a frequency of about .45 as compared to a frequency of about .22

for K  = 0 . In Figures 121 and 122 the sample size remains at 445, but (/32,/33) has

been doubled again. Now there exists a 27% difference between the true 5(0) and 

5(1). One can see that this change drastically tightens up the left tail o f the PDF. K  = 1

is now chosen 65% of the time and is the overwhelmingly clear choice from the PDF 

plot

Finally, instead of calibrating a data generating process to the LaLonde dataset, 

the results o f the procedure on the dataset itself are examined. The known propensity
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1 vscore is assumed to be p = — ^ r i i = .41619. Table 1.3 presents the results of the GMM
N  i»i

procedure. All estimates of the average treatment effect are in a similar range. The 

K  = -1 estimator and the K = 0 estimator are identical since the true propensity score is 

assumed to equal the sample propensity score. According to the GMM procedure, the

K  = 1 estimator is higher-order optimal, K  = I . Thus, the standard difference-in

averages estimator is sub-optimal. There is a 2.6% difference in the K = 1 estimator 

relative to the more common difference- in- averages, K  = 0, estimator. Depending on the 

purpose of the study and the use of the results the 2% -  6% difference between the set of 

possible estimators may or may not be significant

This section essentially reinforced many of the results and much of the intuition 

of Section 1.6. It did so in the context o f a more realistic fake data generating process. 

One can again see that the stronger A' is in the outcome equation, the higher the optimal 

K . The larger the sample size, the higher the optimal K.  The criterion tends to select 

the lower of two K  values when one is optimal and the other is very close to optimal.

Finally, these simulations show that moment selection based on the S(AT) criterion 

works well for the models considered and it appears to work well for the actual 

experimental LaLonde dataset.

19 The results are very similar when the true propensity score is assumed to equal .5.
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1.8 Conclusions

This chapter started by laying out the fundamental problem with respect to 

estimation and analysis o f average treatment effects. It reviewed previous work, based 

on asymptotic theory, which states that estimation of average treatment effects with the 

true propensity score is unbiased but inefficient while estimation of average treatment 

effects with the non-parametric propensity score is consistent and asymptotically 

efficient Since these estimators would tend to be sub-optimal in finite samples, a GMM 

model is considered in which a finite amount of auxiliary information reflecting one’s 

knowledge of the propensity score is used to improve efficiency. MSE plots from this 

model provided intuition for the certain types of situations in which this efficiency gain 

may be significant and when it may not In particular, the true propensity score estimator 

always performed extremely poorly. There should be a non-trivial efficiency gain 

relative to the difference-in-averages estimator when X  is strong in the outcome 

equation. Also, there should be a non-trivial efficiency gain relative to an estimator 

similar to the HER non-parametric propensity score estimator when sample size is small.

To develop an actual procedure that can be implemerted in practice, asymptotic 

expansions of the average treatment effect estimator and the Lagrange Multiplier 

estimator were derived. Through these expansions, a higher-order approximation to the 

true MSE was developed. It was shown, through simulations, that this higher-order 

formula yields a tight approximation to the true MSE and that the second order terms are 

important in yielding this tight fit Taking the components of this formula that depend on

K , a higher-order moment selection criterion, S( K) ,  was developed. It was proven, in a
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fashion similar to Donald and Newey (1999) and Li (1987), that the selection rule for 

S( K)  is higher-order asymptotically optimal for S( K) .

Finally, the finite sample performance of the selection rule was tested on 

simulated data from an arbitrary data generating process and on simulated data from a 

data generating process calibrated to LaLonde’s 1986 dataset The results tended to 

reinforce the previously developed intuition. It also appears that the selection rule selects 

the lower K  value when two adjacent K  values are very close to optimal, even if the 

larger K  value is the optimal one. The PDF of the optimal K  value over 1,000 iterations 

showed that the selection rule tends to pick the optimal AT, or a value very close to it 

MSE-wise, the majority o f the time

The results of this chapter assume that the propensity score is constant and 

known, and that A' is a scalar. Chapter 2 extends the analysis of this chapter by 

examining the case where AT is a vector. The analysis of these chapters has the most 

value for research in an experimental setting. Lastly, Chapter 3 extends the analysis of 

the previous chapters by considering the case when the propensity score is not constant 

and is unknown. Examination of this case is valuable because this holds in the case of a 

non-experimental setting and analysis of non-experimental data is becoming more 

frequently observed in economics.
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Figure 1.1: True MSE o f f  ( y  = .5+2/+ x+ £ , p(x) = 1/2, N = 25)
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Figure 13.: True MSE of f  (y  = .5+2f+ x+ £ , p(x) = 1/2, N = 150)

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

0 .5

0  45

0 4

0 35

0 .3

oUl
CO
S

0 25

0 .2

0 .1 5

0 .05

1 0 1 2 3 5 64
k

Figure 1J  : True MSE of f  ( y = .5 + 2f+ . 3x  +  £ ,  p(x) = 1/2, N = 25)
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Figure 1.4: True MSE of f  (y  = .5 +  2 t +  3 x + £ , p(x) = 1/2, N = 150) (Zoomed In)
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Figure 1.5:TrueMSEof f  ( y  =  .5+ 2/+ x+ £ ,p(x) = Logit,N = 25)
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Figure 1.6: True MSE of T  (y  =  .5 +21 +8jt + £ , p(x) = Logft, N = 25)
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Figure 1.7: True MSE (Solid), Formula MSE (Dotted), and 111 Order Formula MSE (Dasb-Dot)

(y  = .5+2r+ x+ E, p(x) * t/2, N = 25)
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Figure 1.8: True MSE (Solid), Formula MSE (Dotted), and I* Order Formula MSE (Dasb-Dot)

(y  = .5+2f+ x+e,p(x)*i/2,N =i50)
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Figure 1.9: PDF of K  Over 1000 Simulations

(y  = .5+2f+ x + Atx + E , p(x) = 1/2, N = 25)
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Figure 1.10: True S[K)  (Sofid) and Mean of S[K)  (Dotted) Over 1000 Simulations

(y  = .5+ 2f+ x+ .4 tt+ e,p(x) = i/2,N =25)
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Figure I.I I: PDF of K  Over 1000 Simulations

(y  -  .5+ 2f+ x  + Atx+ e , p(x) =* 1/2, N = 150)
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Figure 1.12: True S(K)  (Solid) and Mean of S(K)  (Dotted) Over 1000 Simulations

(y  = .5+2/+ x+.4cc+e,p(x) = i/2,N  = i50)
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Figure 1.13: PDFof K  for LaLoodeCalibrated DGP

(y  = 4359 + 171 l/+.155x + .028£r + £ \p (x) = .416, N = 25)
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Figure 1.14: True S (K) (Solid) and Mean of S[K)  (Dotted) for LaLoude Calibrated DGP

i y  =  4359+ 171U + .  155x+ .0 2 8 tt+ e , p(x) = .41*, N = 25)
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Figure 1.15: PDF of K  for LaLonde Calibrated DGP

(y  = 4359+ 1711/+.155x + .028tt+e ,p(x) = .416, N = 150)
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Figure 1.16: True 5(AT) (Solid) and Mean or S ( K )  (Dotted) for LaLonde Calibrated DGP

(y  = 4359+ 171 If + . 155x+ .028cc+ e , p(x) = .416, N = 150)
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Figure 1.17: PDF of K  for LaLonde Calibrated DGP

= 4359 + 1711/+.310r + ,055cc+f ,p(x) = .4l6,N =  150)
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Figure 1.18: True S(K)  (Solid) and Mam of S ( ^ )  (Dotted) for LaLonde Calibrated DGP

O '=  4359+1711 /+.3 lQx+ .055tc+e, p(x)=^414, N *  ISO)
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Figure 1.19: PDF of K for LaLonde Calibrated DGP

( v = 4359 +171 If +. 155x + .028tc+ e , p(x) = .416, N=445)
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Figure 1J0: True S(K)  (Solid) and Mean of S[K)  (Dotted) for LaLonde Calibrated DGP

(y  = 4359 +171 If +. 155x+ .028cc+ e , p(i) * .416, N =445)
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Figure 1.21: PDF of K  for LaLonde Calibrated DGP

(y  = 4359 +171 If + .31 Ox + .055tt+ £ , p(x) -  .416, N = 445)
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Figure 1.22: True S( K)  (Solid) and Mean of S(K)  (Dotted) for LaLonde Calibrated DGP

( y  = 4359 + 17 1 If +  .31 Or+ .055tc+ e , p(x) «  .416, N =445)
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FullSamnle Treated Controls

Earnings 1978 
0 0

5300
(6632)

6349
(7867)

4555
(5484)

Treatment 
Status (T)

.416
(-493)

1
(0)

0
(0)

Earnings 1975 1377
(3151)

1532
(3219)

1267
(3103)

Age 25.4
(7.1)

25.8
(7.2)

25.1
(7.1)

Education 10.2
(1.8)

10.4
(2.0)

10.1
(1.6)

Unemployed
1975

.649
(.478)

.600
(-491)

.685
(.466)

Married .169
(.375)

.189
(.393)

.154
(.362)

Black .834
(.373)

.843
(.365)

.827
(379)

Hispanic .088
(.283)

.060
(.237)

.108
(311)

No Degree .782
(.413)

.708
(-456)

.835
(.372)

Table 1.1: Sample Means (Standard Deviation) of Post-Training K im fap, Treatment Status, and 
Pre-Treatment Variables for a Sob-Sample of tbe NSW AFDC Participants of LaLonde (1986).
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Non-Standardized Standardized

Constant 1545 5301

Treatment 1610 793.3
Status (T) [2.52] [2.52]

Earnings 1975 .101
[.786]

316.8
[.786]

Age 55.9 396.6
[1.23] [1.23]

Education 369.7
[1.62]

661.7
[1.62]

Unemployed -499.6 -238.4
1975 [-.604] [-.604]

Married -134.9
[-.153]

-50.5
[-.153]

Black -2108
[-1.80]

-784.8
[-1.80]

Hispanic 137.1
[.088]

38.8
[.088]

No Degree -187.5
[-.188]

-77.4
[-.188]

Table l i :  Noo-Standardized and Standardized OLS Resalts for a Regression of Earnings in 1978 
Treatment Status and Other Pre-Treatment Variables for a Sub-Sample of the NSW AFDC 

Participants of LaLonde (1986). T-Statistics in Brackets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

K.
Average Treatment 

Effect Estimate

-1 1794.3

0 1794.3

/ ' 1748.9

2 1726.4

3 1844.8

4 1838.4

5 1809.7

Table 1.3: Average Treatment Effect Estimates for a Sab-Sample of the NSW AFDC Participants of 
LaLonde (1986> One Covariate: Earnings in 1975. ‘Optimal K = l.
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2. C hap ter 2

Higher-Order Optimal Estimation of Binary Average 

Treatment Effects with Experimental Data 

and a Vector of Covariates

2.1 Introduction

In experimental settings, the econometrician will most often have information on 

a vector of pre-treatment variables rather than just a scalar. Even though there is no 

selection problem in this setting, the results of Chapter 1 imply that information from the 

vector of covariates may have a significant value. In particular, if a covariate is relatively 

strong in the outcome equation, the relative value of inclusion of moments of this 

covariate will be high. As has been shown with one covariate, there can be a significant 

MSE gain from using these covariates to account for sample divergences from true 

distributional probabilities.

This chapter will show that the results and intuition of Chapter 1 still hold in a 

setting with a vector of covariates. It will also show that the higher-order asymptotically 

optimal moment selection procedure of Chapter 1 is a valid and useful tool for 

practitioners in this new setting. The econometrician’s knowledge of the propensity
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score and o f a pre-treatment covariate vector can lead to a non-trivial MSE reduction 

relative to the true propensity score estimator, the difference-in-averages estimator, and 

an estimator similar to the HIR non-parametric propensity score estimator. In this 

chapter, it is assumed that the econometrician’s decision problem involves choosing the 

optimal polynomial order o f the vector of covariates for inclusion. Thus, the 

econometrician has already ex-ante selected the best subset of covariates to include in the 

overall estimation procedure. In practice, this may be accomplished through theoretical 

justifications, ex-ante regressions o f the outcome on the treatment indicator and the 

covariate vector, or a combination of the two. Given this setup, the theoretical results of 

Chapter 1 still hold. Theorems 1.1 and 12 can then be used to construct a higher-order 

moment selection criterion and this selection criterion can be implemented in practice in 

a fashion similar to Chapter 1.

The remainder o f die chapter is as follows. Section 2.2 discusses the setup of the 

new model and shows that the fundamental results of Chapter 1 remain unchanged. 

Section 23 presents results of Monte Carlo simulations with two covariates under a 

variety of artificial data generating processes. Section 2.4 presents results of Monte 

Carlo simulations based on data generating processes calibrated to a subset o f the dataset 

of LaLonde (1986) with “Earnings in 1975” and “Education” as the two covariates. 

Finally, Section 2.5 concludes.
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2.2 Setup

The setup of the model is identical to Section 12 except X  is now assumed to be 

a (Dxl)  vector rather than a scalar. Thus, the average treatment effect is estimated in a 

new GMM system of moments. In particular, let

V,(y,
Vzi'**)

where

' y- t  y j l - t )  
p{x)  I - p { x )

- T  - V  - X  ,

'  ‘ - P i * )
f x{ x ) ( t - p {  x))

/ r { x ) ( t - p { x ) )

£(vr(y ,r ,x , r ) )=0 ,

where p(x) is the true propensity score. Notice the only change is that x J has been

replaced by f ] (x) in the i/a2 equation. This change is due to the fact that higher-order 

polynomials and interactions of die elements of X  may be included in the estimation 

procedure as opposed to just higher-order polynomials of a scalar variable.

THEOREM 2 . 1 : Suppose X  is a vector and Assumptions 1 — 5 hold. Asymptotic 

Expansions 1.1 and 1.2, Lemmas 1.1 and 1.2, Corollary 1.1, and Theorems 1.1 and 1.2 

are all valid.
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Proof: See Appendix.

Theorem 2.1 shows that the asymptotic expansions of Chapter 1 remain correct Also, 

the higher-order MSE approximation and, hence, the higher-order S( K)  approximation

remain correct Finally, the criterion function •?(&) remains higher-order asymptotically

optimal for S ( K ) . Given this result, one can employ the moment selection procedure of

Chapter 1 on the model above and obtain a higher-order asymptotically optimal average 

treatment effect estimate.

The key procedural assumption of this chapter is as follows. A' is the subset of 

covariates upon which the econometrician has ex-ante chosen to base estimation. The 

econometrician decides whether or not to include all first-order terms. In other words,

one decides whether or not to include the D x l vector / , ( x )  = x.  If this vector is

included, one then decides whether or not to include all second-order terms, f 2 (x) = xz.

This continues until the optimal number of moments is chosen, K ‘ =D- P ‘ , where P’ is 

the optimal polynomial order. This assumption circumvents the ordering problem 

associated with a vector of covariates. If the econometrician could effectively ex-ante 

order the covariates, marginal first-order moments could be included based on this 

ordering. Then, if MSE could still be reduced, marginal second-order moments could be 

included in the same fashion and so on. The benefit of this method is that inclusion of 

marginal moments can be done cm a covariate-by-covariate basis rather than an order-by-
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order basis20. It will be shown below that inclusion of moments on a covariate-by- 

covariate basis could lead to an efficiency gain, relative to inclusion on an order-by-order 

basis, in certain instances.

2.3 Monte Carlo Simulations with Two Covariates

This section presents results based on Monte Carlo simulations under a variety of 

artificial data generating processes. Similar to Section 1.6, it provides evidence of the

performance of S(K)  and the GMM procedure with actual finite sample datasets. As in 

Chapter 1, the procedure is executed for 1,000 different Monte Carlo samples. The 

distribution of the optimal order over these 1,000 samples is plotted and analyzed. Also,

the mean of S(/T) over the 1,000 samples is plotted and compared to the true S(K) .

Let

Y,=.5+2Tl +PiX u +PiX it+PtX u1 +P5X 2t2 +.4T'XU +.6TlX 2l+en 

e , - iV(0, l ) ,

X t -  WVZF(-l,l),

p ( * , ) = X -

In the explanation of the results that follows, one figure will show the PDF of the optimal 

order, P", from 1000 simulations. Another figure will show the true S(K)  and the mean

of S(K)  over 1000 simulations. The PDF graph yields results on an order-by order basis

10 The results will show that there can be a MSE gain associated with ordering. Knowledge of an
acceptable ordering of X  can be valuable.
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in order to see how well the procedure works for selection of the optimal order. The last 

order value is always from an interaction marginal moment restriction, just to see if this

has an effect The S(K)  graph yields results on a moment-by-moment basis. The K -1  

estimator includes the linear term of X t as a marginal moment restriction. The K - 2  

estimator includes the linear term of X 2 as a marginal moment restriction. The K  = 3 

and K =  4 estimators work in the same way except with second-order terms of AT, and 

X 2. Finally, the last K  value includes an interaction marginal moment restriction. This 

method of displaying results was done intentionally because any order-by-order S  (P) 

values are also contained in moment-by-moment S(K)  results, however in certain 

situations the moment-by-moment results wQl show a potential MSE gain from using a 

moment-by-moment procedure with a pre-ordering of X .

Figures 2.1 and 22  show results for the case where (P2,P2,P4, P5) = (1,1,0,0)

and jV = 25. Figure 22  shows that the optimal K  value is K  = 2 . This estimator 

includes all first-order terms o f X . The K  =2 estimator contains a 76.8% MSE 

reduction21 relative to the true propensity score K  = -1 estimator, a 38.9% MSE 

reduction relative to the difference-in-averages K  = 0 estimator, and a 15.9% MSE 

reduction relative to an estimator similar to the HIR non-parametric propensity score 

K  = 5 estimator. Accordingly, Figure 2.1 shows that the PDF of the optimal polynomial 

order has its mode at P = l  with a frequency of close to .6. Also, the right tail o f the

21 MSE values not shown in the graphs.
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distribution tends to be thicker due to the feet that the true £ ( £ )  is closer to the optimal 

S(K)  for K  values greater than K = 2 versus those less than K  = 2.

Figures 23 and 2.4 show results for the case where (/J2,0 3,/}4,/35) = (1,0,0 ,1)

and N  = 25. Figure 2.4 shows that the optimal K  value is K  = 2. Again, this estimator 

includes all first-order terms of X . The optimal K =2 estimator contains a 75.3% MSE 

reduction relative to the true propensity score K  = -1  estimator, a 30.7% MSE reduction 

relative to the difference-in-averages K  = 0 estimator, and a 25.1% MSE reduction 

relative to an estimator similar to the HIR non-parametric propensity score K  = 7 

estimator. Figure 2.3 shows that the PDF of the optimal polynomial order has its mode at 

P=  I with a frequency of close to .5. Again, the right tail of the distribution tends to be

thicker due to the feet that the true S ( £ )  is closer to the optimal S(K)  for K  values 

greater than K = 2 versus those less than K = 2. Notice that X 22 enters the outcome 

equation and X 2 doesn’t  These results show that, with this data generating process, 

inclusion of the linear term of X 2 is optimal in accounting for Â 2 in the outcome 

equation. The cost of including all second-order terms is greater than the benefit even 

though the second-order terms include X 2 . Thus, X 2 is sufficiently strong in the 

outcome equation such that it is optimal to include A”, in the estimation procedure, but it 

is not strong enough such that X 2 should also be included.

Figures 2.5 and 2.6 show results for the same 0  values as Figures 23 and 2.4, 

except N  = 150. Figure 2.6 shows that the optimal K  value is still K  = 2.  Now, the
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optimal K  = 2 estimator contains a 77.4% MSE reduction relative to the true propensity 

score K  = - I  estimator, a 33.7% MSE reduction relative to the difference-m-averages 

K = 0 estimator, and a 4.0% MSE reduction relative to an estimator similar to the FOR 

non-parametric propensity score K  = 9 estimator. The drastic reduction in the efficiency 

gain of the optimal estimator relative to the large K  estimator is due to the increased 

sample size. As would be expected, Figure 2.5 shows that the PDF of the optimal 

polynomial order is zero for P = - I  and P - 0 and is positive and significant for P> \ .  

Because the sample size is large, the average treatment effect estimator is essentially the 

same, in a MSE sense, when higher-order terms of X  are included in the estimation 

procedure. This is because the cost of additional noise has decreased.

Figures 2.7 and 2.8 show results for the case where (/3,,/33,/J4, fis) = (1,1,0,7)

and N  =25. Figure 2.8 shows that the optimal K  value is K  = 4 . This estimator 

includes all first-order and second-order terms of X . The optimal K  = 4 estimator 

contains a 91.5% MSE reduction relative to the true propensity score K  = -1 estimator, a 

76.1% MSE reduction relative to the difference-in-averages K  = 0 estimator, and a 

16.1% MSE reduction relative to an estimator similar to the HIR non-parametric 

propensity score K  = 7 estimator. In this specification, X x is slightly strong in the 

outcome equation and X 2 is very strong in the outcome equation. Figure 2.8 shows that 

5(3) > 5 (2 ) .  In other words, MSE rises when the marginal moment o f X x is included 

along with the first-order moments. However, since X 2 is strong in the outcome 

equation, 5(4) <5 (2 )  < 5 (3 ) .  The MSE is reduced when the marginal moment of X 22
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is included along with the moment from X 2 and all first-order moments. Thus, if the 

econometrician could effectively order X, and X 2, the most optimal estimator would 

most likely be the estimator employing all first-order moments and the X 2 moment

Finally, Figure 2.7 shows that the PDF of the optimal polynomial order correctly has its 

mode at P = 2 with a frequency of close to .6.

The results o f this section reaffirm the results and intuition of Chapter 1. Again it 

is shown that there can be a significant MSE gain relative to the true propensity score 

estimator and the difference-in-averages estimator when X  is strong in the outcome 

equation. Also, there can be a significant MSE gain relative to an estimator similar to the 

HIR non-parametric propensity score estimator when sample size is small. This section 

has shown that these results also hold true when X  is a vector. In relevant small sample 

sizes, the procedure correctly picked the optimal order of X  to include. By “correct” it 

is meant that the mode of the PDF was at the correct order value and the PDF value for 

that order was high. Finally, it was also shown that, in certain situations, there might be a 

possible MSE gain from pro-ordering the variables of X  and implementing the 

procedure cm a moment- by- moment basis rather than an order-by-order basis.

2.4 Application to Experimental Data of LaLonde (1986)

In this section, the GMM procedure is applied to various calibrated data 

generating processes of a subset o f the LaLonde (1986) experimental dataset Then, the 

procedure is applied to the actual dataset itself. The data generating process is calibrated 

to the empirical distribution of the relevant variables in this dataset The two covariates
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used in this section are “Earnings in 1975” and “Education.” In doing a study on future 

earnings, it seems reasonable to take into account the current earnings of the participants. 

Education was chosen as the second variable because it is the most significant non

binary22 covariate in Table 12. The results will reinforce all previous results and show 

that the proposed estimation procedure performs well with a vector of covariates and a 

more credible data generating process.

Similar to Chapter 1, a Monte Carlo dataset is calibrated to the LaLonde dataset 

according to the following rules. Let the scalar covariate xLl be Earnings in 1975 and let 

xL2 be Education. Let (yL,tL) be the outcome vector and the treatment vector from 

LaLonde’s dataset, respectively. Draw (x, ,x2) from the empirical joint distribution of 

(xLl,xL2) ■ Let the propensity score equal the empirical mean of the treatment vector tL,

1 ,vp - — \ t u =.416. Draw t from a BIN(\ ,p)  distribution. Run the OLS regression of
N  mi

y L = A ,+ P a + P i A i + P z A i + P J lA i + P a x h  •

Let P be the resulting vector of parameter estimates and <x2 = -  6) ' ^ raw v

from a A^^0,d2) distribution. Finally, let

y = Po+Pt+Pi* +PiA +PJA +P&+V.

hi what follows, this calibration routine is used to examine the properties of the £(&) 

criterion. The simulated sample size is adjusted from N = 25 to N = 150 to N = 445

22 A non-binary covariate is chosen so that inclusion of higher-order polynomials may matter.
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(LaLonde’s sample size), and the (/32,/3,,/?4, v a l u e s  are adjusted to see how they 

affect the results.

Figures 2.9 and 2.10 show the results of the calibrated model when N  = 25. The 

optimal estimator is the K = 0 estimator. The true 5(1) is close to 5(0).  However, the

true 5(2) is significantly different from 5(0) .  Since the vector procedure chooses the 

optimal order, P ' , rather than the optimal moments, K ‘ , the PDF of the optimal order is 

relatively tightly fit around P  = 1. Notice that the true S(K)  function disappears after 

K = 2. Again, this is solely because the Earnings in 197S variable is 65% zeros. If one 

of the 1,000 fake datasets has an or, with a large amount of zeros, then x, will be close to 

a linear combination of its powers and the routine will fail or return NaNs with high K 

values. For N  = 150 and N  =445, this is not a problem. Figures 2.11 and 2.12 show the 

results of the same model when (/32, /3}, /?4, /35) has been doubled in magnitude. The 

optimal estimator is the K  = 1 estimator and the optimal order is the P  = 0 order. In this 

case,the true 5(1) is now less than 5(0) and the true 5(2) is much closer to 5(0) .

The effect of this is that PDF of the optimal order has a mode at P=  0 of .45, but the 

PDF value of P = 1 is high too at .33. Also, the distribution of the PDF has a thicker 

tight tail than the PDF of Figure 2.9. These results are as one would expect them to be.

Figures 2.13 and 2.14 show the results of the calibrated model when N  = 150. At 

iV = 25, the optimal estimator was the K  = 0 estimator. Now, the optimal estimator 

increases to the AT =2 estimator where all first order terms are included. Since the true
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S  (2) is relatively close to 5(0) in percentage terms, the PDF of the optimal order has

its mode at P  = I with a frequency of .45, but the PDF value at P = 0 is also relatively 

high at .33. Figures 2.15 and 2.16 show the results o f the same model when

A , P*’ Ps) tas been doubled in magnitude. The optimal estimator is still the K  = 2

estimator and the optimal order is the P = I order. As would be expected, the PDF of the 

optimal order still has its mode at P = 1 with a higher frequency of .62 and the 

distribution has become much more tight on the left The procedure picks a low order 

with much less frequency in this case. This is due to the face that the MSE penalty of 

doing so is significantly greater, in percentage terms, because X ] and X 2 have been 

made stronger in the outcome equation.

Figures 2.17 and 2.18 show the results o f the calibrated model when N  = 445. 

The optimal estimator is the K = 2 estimator with the optimal order being P=  1. When 

N  = 150, the optimal order was also P = 1, but it was only marginally optimal relative to 

the P = 0 order. Now, with an even larger sample size, the PDF of the optimal order is 

much tighter around its mode of P = l .  Also, the frequency of P = 1 has increased from 

.45 when AT = 150 to .65. Figures 2.19 and 220 show the results of the same model

when [P2,Py,Pt, P5) has been doubled in magnitude. The optimal estimator is the

K  = 2 estimator with the optimal order being P = 1. Now, with X x and X 2 stronger in 

the outcome equation, the left tail of the PDF o f the optimal order is essentially gone.

Order values less than P =\ are virtually never selected. The right tail of the PDF is
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slightly fatter than before AT, and X 2 were made stronger. Again, this is just as one 

should expect with a large sample size and strong covariates in the outcome equation.

Lastly, the results of the procedure on the dataset itself are examined. The known

I vpropensity score is again assumed to be p  = — V  tu = .41623. Table 2.1 presents the

results of the GMM procedure. The estimates of the average treatment effect tend to 

decline with K.  The K  = -1  estimator and the K = 0 estimator are again identical since 

the true propensity score is assumed to equal the sample propensity score. The higher- 

order optimal order is P = 1. This corresponds to the K -  2 estimator. Thus, the 

standard difference-in-averages estimator is sub-optimal and an estimator similar to the 

HIR non-parametric propensity score estimator is also sub-optimal. There is a 10.5% 

difference in the higher-order optimal estimator relative to the more common difference- 

in-averages, K  = 0 , estimator. There is a 2.4% difference between the higher-order 

optimal estimator and the K  = 9 estimator. This is a non-trivial difference, especially 

between the higher-order optimal estimator and the more common difference-in-averages 

estimator. Thus, implementation of the procedure of this section could likely have an 

important impact if the two-covariate specification was chosen.

The results of this section show that the procedure performs well in a more 

realistic setting in which an econometrician has data on a vector of covariates. Moment

selection based on the S( K)  criterion with a vector X  performs well for the models

considered and it appears to perform well for the actual experimental LaLonde dataset. It

23 The results are very similar when the true propensity score is assumed to equal .5.
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is interesting to note that the right tail of the optimal order PDF does not become as fat 

with sample size in the LaLonde Monte Carlo simulations of this section as it does in the 

standard Monte Carlo simulations of Section 2.3. In Section 23, a sample size of 

JV = 150 could be considered large such that the penalty for including many moments in 

the estimation procedure is small. Thus, the PDF of the optimal order has an extremely 

fat tail. In this section, with a more realistic data generating process, even when N  =445 

the right tails of the PDF graphs remain relatively trim. This seems to suggest that this 

procedure has merit over a non-trivial range of sample sizes in real world problems.

2.5 Conclusions

This chapter adjusts the framework of Chapter 1 to develop a higher-order 

optimal estimator for average treatment effects with experimental data and a vector of 

covariates. The key assumption of the chapter is that the econometrician pre-selects the 

subset of covariates to use in the estimation procedure. Given this selection, the higher- 

order optimal polynomial order of A" is selected for inclusion as moments in the model 

Theorem 2.1 shows that the results from the previous chapter are applicable in the case of 

a vector X .

The finite sample performance of the selection rule was again tested on simulated 

data from an artificial data generating process and on simulated data from a data 

generating process calibrated to I blonde’s 1986 dataset The results again reinforced all 

previously developed intuition that large efficiency gains from this procedure are possible 

when sample size is small or when X  is strong in the outcome equation. Finally, the
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LaLonde calibrated models show that the selection rule has positive economic value over 

a significant range o f sample sizes. In other words, anon-trivial range of sample sizes 

can be considered “finite” or “small,” upon which the results of this chapter apply.
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Figure 2.1: PDF of P Over 1000 Simulations (3 is interaction term)
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Figure 22: True S[K)  (SoOd) and Mean of S( K)  (Dotted) Over 1000 Simulations

(y  = .5+2/+x, +XJ + .40C, + .6tx, + £  ,p(x)=  l/2,N  = 25)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

0 .7

0 6

0 5

0 4
U.

e
0 3

0 2

*0 5 0 OS t 5 2 2 .51 1 3 3 5 4
O rder of Term s included (Lest Number is  lor interaction Terma)

Figure 2-3: PDF of P  Over 1000 Simulations (4 is interaction term)
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Figure 2.4: True S ( K )  (Solid) and Mean of S{K)  (Dotted) Over 1000 Simulations

(y  = .5+2f+x1+jc22+ .4oI +.60j + e ,p(x) = l/2,N =25)
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Figure 2.6: True S ( K)  (Solid) and Mean of S[K)  (Dotted) Over 1000 Simulations

0 ' = .5 + 2f + JCt +x22+.4ct, +.6DC2 + £ , p(i) = 1/2, N = 150)
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Figure 2.7: PDF of P  Over 1000 Simulations (4 is interaction term)
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Figure 2.9: PDF of P  Over 1000 Simulatioos (3 is interaction term)

(>' = 3728—4772* +.154x, -t62.7x, +.027*jq +625rx, + e ,p (x ) = .4l6,N  = 25)

o

1

2

>33
(O

■5

Z1 0 3 51 4
k

Figure 2.10: True S( / l )  (Solid) and Mean of S [ K )  (Dotted) Over 1000 Simulations

(y  = 3728-4772* +.154x, +62.7x2 +.027*jj +625*x, + £  ,p(x) = .416,N=25)
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Figure 2.11: PDF of P  Over 1000 Simulations (3 is interaction term)

(y = 3728-4772/ +.307x,+ I25x2 + .054tc1 +I250tc2 + e,p (x) = .4I6,N = 25)
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Figure 2.12: True S( K)  (Solid) and Mean of S(K)  (Dotted) Over 1000 Simulations

( y  =  3728—4772/ +.307x,+ 125.x2+.054tc, +1250cc2 -i-e, p(x) = .416,N = 25)
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Figure 2.13: PDF of P  Over 1000 Simulations (4 is interaction term)

(>> = 3728-4772* +.154x, -)62.7x2 +.027q + 625*ĵ  + e , p(i) = .416, N = 150)
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Figure 2.14: True S[K)  (Sold) and Mean of S( K)  (Dotted) Over 1000 Simulations

(>> = 3728-4772* +.154x, -f62.7xz + .0 2 7 + 625*ĵ  + e , p(x) -  .416, N = 150)
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Figure 2.15: PDF of P Over 1000 Simulations (4 is interaction term)

(y  = 3728-4772/+ .307xj + 125x2 + .054tx{ +l250/r2 +e,p(x) = .416, N = 150)
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Figure 2.16: True S ( K)  (Sofid) and Mean of S( K)  (Dotted) Over 1000 Simulations

(y  = 3728 -  4772/ +.307x,+ 125x2+.054tc, +1250tc2 + £ , p(x)=.416, N =150)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

0 9

0 .8

0  7

0 8
u. 0 5

0 4

0 .3

0 2

0 5 2 2 5 3 3 51 -0  5 0 ! I 5 4
Order o l Term s included (Last Number is  for interaction  Terms)

Figure 2.17: PDF of P  Over 1000 Simulations (4 is interaction term)

( y  =  3728-4772/ +.154xj -*62.7x2 +.027tq +625fj^ ,p(x) = .4l6,N  = 445)
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Figure 2.18: True S (  AT) (Solid) and Mean of 5 (A )  (Dotted) Over 1000 Simulations

O '=  3728-4772/ +.154x, -t62.7x2 -t-.027/jq +625/^ + F ,p(x)= .4l6,N =445)
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Figure 2.19: PDF of P Over 1000 Simulations (4 Is interaction term)

(y = 3728-4772/ +.307xI+ 125jCj +.054rxl +I250tc2 p<x) = .4l6, N = 445)
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Figure 2 J0: True S( K)  (Sollig and Mean of S[K)  (Dotted) Over 1000 Simulations

( y  =  3728-4 7 7 2 f+.307*,+ 125j^+.054cc, +1250tc2 + e  , p(x)=.416, N=445)
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1C Average Treatment 
Effect Estimate

-1 1794.3

0 1794.3

1 1748.9

2 ’ 1623.8

3 1605.1

4 1406.8

5 1531.4

6 1536.1

7 1521.4

8 1502.9

9 1584.2

Table 2.1: Average Treatment Effect Estimates for a Sub-Sample of the NSW AFDC Participants of 
LaLonde (1986). Two covariates: Earnings in 1975 and Education.

'Optimal Order *  i  (Optimal K=2).
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3. C hapter 3

Optimal Finite Sample Estimation of Binary Average 

Treatment Effects with Non-Experimental Data

3.1 Introduction

Analysis of optimal estimation of average treatment effects with non- 

experimental data is a valuable task. Many times, non-experimental data is all that is 

available to the econometrician. Not all job-training programs are offered experimentally 

through random selection. Certainly, a takeover of one firm over another is a function of 

various economic forces and factors, not a coin flip. Chapters 1 and 2 discuss the 

properties of a higher-order optimal GMM estimator o f average treatment effects when 

the propensity score is known. However, in many, if not all, non-experimental settings 

the propensity score is not known. In this case, one observes the treatment status, pre

treatment variables, and outcome of all agents involved, but one does not know the form 

of the self-selection mechanism, the propensity score.

This chapter uses the analysis of the previous chapters to develop an optimal24 

GMM estimator of average treatment effects when the propensity score is unknown. The

24 “Optimal” as opposed to “higher-order optimal” because no higher-order approximations are used.
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previous GMM moments are adjusted to account for the fact that the propensity score is 

know longer known and must be estimated in some manner. Logit estimation of the 

propensity score is proposed where the terms in the Logit regression and the GMM 

moments are selected simultaneously. In this setting, the question of interest is: What is 

the optimal number of terms to include in the Logit regression and the GMM moments so 

that the MSE of the resulting estimator will be minimized? Just like in previous chapters, 

the term “optimal” is relative to all possible estimators within the given GMM class. The 

complicated form of the MSE of the resulting estimator will be shown, and then a simple 

approximation to this MSE will be derived. The approximation is not an asymptotically 

optimal one (as in the previous chapters) although it is a simple one. Finally, using 

artificial Monte Carlo simulations and simulations calibrated to the non-experimental 

data of LaLonde (1986), the finite sample MSE of the newly derived Unknown 

Propensity Score GMM estimator will be compared to two forms of the HIR non- 

parametric propensity score estimator. One form uses cross-validation for bandwidth 

selection and the other uses Silverman’s Rule of Thumb.

It will be shown that in the majority of cases the optimal Unknown Propensity 

Score GMM Estimator outperforms the HIR estimator with respect to finite sample MSE. 

This efficiency gain converges to zero as sample size increases. However, the selection 

criterion for choosing the optimal K  is shown to be unreliable. Also, the finite sample 

performance of the latter two estimators will be compared to the performance o f the 

optimal Known Propensity Score GMM Estimator of Chapters 1 and 2. The Known 

Propensity Score GMM estimator outperforms the two unknown propensity score
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estimators in all cases, and the efficiency gain also converges to zero as sample size 

increases. Hence, relative to the two unknown propensity score estimators considered, 

the propensity score is not ancillary for estimation of average treatment effects in finite 

samples25. This result is the finite sample compliment to the asymptotic results of Hahn 

(1998), which state that the propensity score is ancillary for estimation of average 

treatment effects.

The format of this chapter is as follows. Section 3.2 sets up the adjusted GMM 

framework, derives the Unknown Propensity Score GMM estimator, and develops the 

moment selection criterion to be used. Section 3.3 compares the performance of the three 

estimators discussed when X  is a scalar. This is done with artificial Monte Carlo 

simulations and non-experimental LaLonde data calibrated simulations. Section 3.4 

presents results of similar comparisons to Section 3.3, except X  is a 2x1 vector.

Finally, Section 3.5 concludes.

3.2 Adjusted GMM Framework

This section presents the details of the adjusted GMM framework proposed for 

use in estimation of average treatment effects when the propensity score is unknown. 

Given that the econometrician has no knowledge of the propensity score, the estimation 

method of Chapters 1 and 2 is no longer feasible. Thus, the adjusted GMM moment 

conditions become

25 See Hahn (1998) for asymptotic results.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

where

p{ x) l - p ( x )
- r  - V  - r ,

(/,*) =

f  ‘ -Pi*) )
f i i x) ( ‘- p (x ))

\
M x ) { t - p i x ))

and p(x)  is no longer known. Let AT+ 1 be the total number of moments included in

ijr2. For the remainder of the chapter X  will be added to the auxiliary moments in 

ascending polynomial order, whether X b a  scalar or a vector. Covariate interactions 

were discussed in Chapter 2. They are not treated in this chapter because the main focus 

is to compare and contrast the finite sample performance of three estimators: the optimal 

Known Propensity Score GMM estimator, the optimal Unknown Propensity Score GMM 

estimator, and the HIR estimator. Thus, let P  be die total number of polynomial orders 

of X  included in y/2. When AT is a scalar, K = P , and when X  is a D xl vector,

K = D P .

If the propensity score is known, the setup above is identical to that of Chapter 1 

when X  is a scalar and Chapter 2 when AT is a vector. Since the propensity score is 

unknown, the following identification assumption is made. Let
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a ,  ♦<*'/,( x)+-~*a,'/,(x)
p(x)  = --------- ;--------- :-----

I  +  f \

If X  is a scalar then [x) = x  and

, x e
P(x ) = 1+ *****

where a\ is an unknown scalar parameter to be estimated. If X  is a vector then 

f { x ) =  x  and

p (x ) = 6
\  +  e ao*ai**- +<*r*r

where x‘ is D x l and a, is an unknown D x l parameter vector to be estimated. Hence,

the propensity score is parameterized by K + 1 = D- P+ 1 unknown parameters. Plugging

the propensity score into \jr=\jf{y,t,x,z,a) yields a system of K + 2 moment conditions

and K + 2 unknowns. This system of moments is always just- identified Intuitively, it is 

assumed that, since one does not have information on the propensity score or the optimal 

moments to include in the estimation procedure, one includes a marginal term of AT in a 

moment restriction and in the Logit form of the propensity score simultaneously.

Assuming a Logit functional form for the propensity score has two nice properties. First, 

a Logit with higher-order polynomials of X  in the exponential can approximate any 

continuous PDF arbitrarily closely. Second, the fitted probabilities are always contained

in the interval (0,1). The Linear Probability Model also has the first property but does
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not have the second. Use of the Linear Probability Model will be discussed in the results 

below.

The estimation procedure for the adjusted GMM framework is as follows, yr is 

just-identified so there will be a unique solution for the estimators ( f , a ) .  Notice that 

when p(x)  is plugged in, yr2 is exactly equal to the Maximum Likelihood moments of 

the Logit26 and is only a function of a . Thus, a  is estimated by running the appropriate 

Logit regression. The resulting estimate of a  is then plugged into i/r, to solve for f . 

Specifically,

where p( x)  is the fitted Logit probability. If p(x)  is estimated non-parametrically, f  

will be the HIR non-parametric propensity score estimator. The adjusted GMM 

framework of this chapter essentially substitutes a flexible Logit probability estimate in 

place of a non-parametric probability estimate. The HIR estimator includes either all or 

none of the information contained in X . In finite samples, there may be an efficiency 

gain to including a subset of this information, in the form of lower-order polynomials of 

X , in a flexible Logit specification.

The next step is to develop a criterion upon which to select K  or P . Hence, an 

approximation to the MSE of the resulting estimator is necessary. With the HIR 

estimator this step is not necessary, either X  is fully included in estimation of the

26 The score function, whose expectation is zero.
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propensity score or it is not However, optimal bandwidth selection becomes an 

important issue. Remember, the main goal of this dissertation is to develop an estimator 

that minimizes the MSE of the average treatment effect estimator under a variety of 

assumptions (chapters). The adjusted GMM framework of this chapter yields the 

estimator of equation (23). Subtracting r  yields

f - r = i p - r >-

Thus, the MSE of f  is

2 \

X 2

.V X

1-1 /-I

(24)

If the Vt ’s are independent, the MSE of f  reduces to — ^  ' where F a r(i')  can be

approximated with the sample variance of V . This would provide an asymptotically 

optimal approximation to the true MSE. However, the ^ ’s are not independent because 

each is a function of the estimator a. . Thus, the true MSE of f  is a function of Var ( K)

as well as C o v ^ ,P \) fra-all j > i .  Estimating all relevant covariances in practice can

be very difficult so the formula fix’the MSE of f  when the Vt ’s are independent will be 

used throughout the remainder of the chapter for selection o f K . Specifically, let
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where V( K)  =— ^ V ( K ) . Let K  = argmin[s(AT)}. S( K)  is not asymptotically 
N  K

optimal like S( K)  in Chapters 1 and 227. However, it has a benefit in that it is extremely 

simple to calculate and use in practice. The performance o f the S( K)  moment selection 

criterion will be examined in the Monte Carlo simulations in the next two sections.

3.3 Monte Carlo Simulations with a Scalar Covariate

This section presents simulation results for the case where X  is a scalar. Two 

types of simulation are performed, artificial Monte Carlo simulations and Monte Carlo 

simulations calibrated to a subset of LaLonde’s 1986 non-experimental dataset on the 

effects of a job-training program on future earnings. The finite sample MSE of the 

Known Propensity Score GMM estimator of Chapters 1 and 2. the Unknown Propensity 

Score GMM estimator of this chapter, and the HIR estimator are presented and compared 

for all data generating process considered

3.3.1 Artificial Monte Carlo Sim ulations

The following artificial data generating process is used for the simulations of this 

section. Let

e , - N {  0,1),

"  S{K)  is highcr-order asymptotically optimal. There are no higher-order MSE approximations in this 
case, so the term “higher-order” is left out.
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X, ~ W VZF(-l,l),

a,*a,X, +OiX* *a>x}
p l X \  = — ------------- ----- r ,

'  ' l + ̂ ‘a*a,X‘ +a2Jf? *«)-<■.

where (0 o,0 ,,0 ,,0 3)= (.5 ,2 ,l,.4 ) and ( a ^ a ^ a , , ^ )  = (.l,.7 ,-.4 ,.3 ). Inthisdata

generating process, assignment to treatment is no longer random and the treatment effect 

varies across individuals through the interaction of T with X . The average treatment 

effect, in this case, is equal to r  = $  +fiiE( X)  = 2 . In what follows, the MSE of the

Known Propensity Score GMM estimator and the Unknown Propensity Score GMM 

estimator is calculated as the sample MSE o f5,000 average treatment effect estimates for 

each K  value. The MSE of the HIR non-parametric propensity score estimator is 

calculated as the sample MSE of 1,000 average treatment effect estimates for each

estimation method (cross-validation and Silverman’s Rule of Thumb)28. Also, the S(K)

criterion is used to select the optimal K  value, K,  for 1,000 samples. The PDF of these

K  values is plotted to show the performance of the S( K)  moment selection criterion for

the various data generating processes.

Table 3.1 and Figure 3.1 present results for the case where N  = 50. The optimal 

Known Propensity Score GMM estimator is the K  = I estimator. The optimal Unknown 

Propensity Score GMM estimator is also the K  = 1 estimator. The optimal HIR estimator 

uses Silverman’s Rule of Thumb for bandwidth selection. This is not surprising 

considering that Silverman’s Rule of Thumb is the optimal bandwidth selection rule in
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(Hie dimension. It’s two dimensional performance will be examined in the next section. 

Figure 3.1 shows the PDF of K  for the Unknown Propensity Score GMM estimator. It 

can be seen that the S(K)  criterion performs relatively poorly although the mode of the 

PDF is at the true optimal K  value, K = \. Table 3.1 shows that, in the current data 

generating process, the optimal Known Propensity Score GMM estimator has the lowest 

MSE, followed by the optimal Unknown Propensity Score GMM estimator, and then the 

optimal HIR estimator. The optimal Known Propensity Score GMM estimator yields a 

3.9% MSE reduction relative to the optimal Unknown Propensity Score GMM estimator 

and a 6.0% MSE reduction relative to the optimal HIR estimator. Thus, knowledge of the 

propensity score is non-trivial relative to one of the more common estimators used when 

the propensity score is unknown, the HIR estimator. Also, the Unknown Propensity 

Score GMM estimator developed earlier in this chapter has a 2.3% MSE reduction 

relative to its unknown propensity score counterpart, the HIR estimator. Hence, in this 

case, because of the small sample size, if the propensity score is unknown, it is optimal to 

include only a subset of the information contained in X  in the estimation procedure 

rather than all of it

Table 3 2  and Figure 3.2 present results for the case where sample size is 

increased to N = 150. The optimal Known Propensity Score GMM estimator increases 

to the K  = 3 estimator, as expected. The optimal Unknown Propensity Score GMM 

estimator remains the K  = 1 estimator. Finally, the optimal HIR estimator still uses

2S 1,000 iterations, rather than 5,000 iterations, was chosen because cross-validation routines can take a 
long time to run in practice if the potential bandwidth vector is significantly exhaustive.
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Silverman’s Rule of Thumb for bandwidth selection. Figure 3.2 shows that the PDF of

K  for the Unknown Propensity Score GMM estimator becomes tighter around the true 

optimal K  value, K  = 1. However, the distribution is still relatively thick. Table 3.2 

shows that, again, the optimal Known Propensity Score GMM estimator has the lowest 

MSE, followed by the optimal Unknown Propensity Score GMM estimator, and then the 

optimal HIR estimator. Now, the optimal Known Propensity Score GMM estimator 

yields a smaller 3.6% MSE reduction relative to the optimal Unknown Propensity Score 

estimator and a smaller 4.6% MSE reduction relative to the optimal HIR estimator. Also, 

as expected, the MSE of the optimal Unknown Propensity Score GMM estimator and the 

optimal HIR estimator become closer in percentage terms (there is a 1.1% MSE 

difference). Thus, there is still a finite sample advantage for the optimal Known 

Propensity Score GMM estimator over the two unknown propensity score estimators, but 

the advantage has diminished. Also, the advantage of the optimal Unknown Propensity 

Score GMM estimator over the optimal HIR estimator has diminished.

Table 3.3 and Figure 33 present results for the case where sample size is 

increased even more to N  = SOO. In this case, the optimal Known Propensity Score 

GMM estimator remains the K  = 3 estimator and the optimal Unknown Propensity Score 

GMM estimator increases to the K = 2 estimator. The optimal HIR estimator still uses 

Silverman’s Rule of Thumb. Figure 33 shows that the PDF of K  for the Unknown 

Propensity Score GMM estimator now becomes significantly tight around the true 

optimal K  value, K  = 2. From Table 33, it can be seen that the optimal Known 

Propensity Score GMM estimator and the optimal Unknown Propensity Score GMM
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estimator perform very similar. There is only a .6% difference in their MSEs. The 

difference in performance between the optimal Known Propensity Score GMM estimator 

and the optimal HIR estimator diminishes to 2.5%, and the difference in performance 

between the optimal Unknown Propensity Score GMM estimator and the optimal HIR 

estimator is small at 1.9%.

Asymptotically, the MSEs of the three estimators should tend to converge to the 

semi-parametric efficiency boind29. The results indicate that the MSEs are converging as 

sample size increases. However, in the finite sample data generating processes above, the 

optimal Known Propensity Score GMM estimator always outperforms the two unknown 

propensity score estimator and the optimal Unknown Propensity Score GMM estimator 

always outperforms the optimal HIR estimator. The largest MSE reduction is 6%. While 

this is non-trivial, one may expect this number to be even larger in truly small samples or 

samples with equivalent sample sizes and a vector of covariates. Remember from 

Chapters 1 and 2 that “large sample” results tended to obtain relatively quickly with the 

artificial Monte Carlo data. This, combined with the use of a scalar covariate, is why 

relatively small percentage MSE decreases are observed in the setting above in what

would initially appear to be a “small sample size”. Also, the S( K)  criterion for choosing 

the optimal K  value for the Unknown Propensity Score GMM estimator performs poorly 

when sample size is 50 and 150, and much better when sample size is 500. Thus, while 

the optimal Unknown Propensity Score GMM estimator has its most significant 

improvement over the HIR estimator in small sample sizes, the selection criterion for
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choosing the optimal K  value is poor over these ranges. This is due to the fact that 

S(K)  leaves out relevant covariances in its functional form. In small samples, these 

ignored lower-order covariance terms can be significant

3.3 .2  Monte Carlo Sim ulations Calibrated to LaLonde Data

This section performs similar experiments as Section 33.1 except the Monte 

Carlo fake data generation mechanism is calibrated to a subset of the non- experimental 

dataset of LaLonde (1986). In this dataset the treated individuals remain the treated 

NSW AFDC participants. However, the controls are now drawn from the Panel Study of 

Income Dynamics (PSID). Thus, the dataset exemplifies a non-experimental sample.

Table 3.4 shows the sample means and standard deviations for the outcome variable 

(Earnings in 1978), the treatment variable, and all pre-treatment variables of this dataset 

Means and standard deviations are also shown separately for the treated and for the 

controls. In this sample, selection into treatment status is not random. The sample means 

and standard deviations of the pre-treatment variables (Earnings in 1975 and below) 

reflect this fact in that they are not similar. The two closest means occur in the Age and 

Education variables. This is one of the reasons why these variables are chosen for use in 

the LaLonde simulation routine. The other reasons are discussed below.

A Monte Carlo simulation is calibrated to the LaLonde dataset according to the 

following rules. They are similar to the rules of Chapter 1. Let x L be the observed scalar 

covariate. Let [yL ,tL) be the observed outcome vector and treatment vector from

29 When normalized.
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LaLonde’s dataset, respectively. Run a Logit regression of tL on (l, 2) to get

/

estimates of the resulting parameter vector a  = (d0,d ,,d ,) . The fitted Logit

probabilities will be the true propensity score values for each observed xL. Run the OLS

regression of

y L =  Po+ P a  + P * l + Pa a  + e  ■

Let f} be the resulting vector o f parameter estimates and a 1 = ^ _ 4 j • Draw x

from the empirical distribution of x L. Calculate the true propensity score, p { x ) , as the 

fitted Logit probability of t \ x .  Draw t from a BIN p(x))  distribution. Draw v from 

a N ( 0 , d J) distribution. Finally, let 

y = P 0 +Pf  + P:!x + P Jtx+ v.

A key assumption in the estimation of average treatment effects is Assumption 4, 

the assumption that the propensity score is not close to zero or one. This implies that the 

data contains individuals with identical or similar covariates, some who received the 

treatment and some who did not Assumption 1 (Unconfoundedness) then implies that 

these individuals are comparable with respect to their potential outcomes. An implication 

of the propensity score being bounded away from zero and one is that a histogram plot of 

X  fix’the treated should have significant overlap with a histogram plot of X  for the 

controls.

Figure 3.4 shows these histogram plots for the three non-indicator covariates 

Earnings in 1975, Education, and Age. One can see that there is essentially no overlap in
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the distribution of Earnings in 1975 between the treated and the controls. There is small 

but significant overlap in the distribution of Education in the 8 to 12 range. Finally, there 

is again small but significant overlap in the distribution of Age in the 18 to 35 range. The 

covariate with the best overlap is Age, and this is the reason why Age is chosen as the 

scalar covariate of this section. Even though Age has the best overlap in its distribution, 

the true propensity score (as derived above) was still very often close to zero. Its 

minimum value was .011, its maximum value was .336, and its mean was .069. In theory 

this may be considered bounded from zero, but in practice, with .small sample sizes, this 

results in many singular matrices and highly unreliable and volatile results. Because of 

this the following changes were made. Observations with an Age value less than 18 or 

greater than 33 were deleted from the LaLonde dataset This resulted in a decrease in 

sample size from 2675 to 1436. Even with this adjustment, the propensity score 

remained low so the d, parameter was decreased to 90% of its original value. The new 

true propensity score has minimum value of .428, a maximum value of .684, and a mean 

of .482. Thus, the distribution of the true propensity score has been centered and 

significantly (for practical small sample purposes) bounded away from zero and one.

Figure 3.5 shows the histogram of the original pre-modified propensity score and the 

histogram of the post-modified propensity score.

Table 3.5 and Figure 3.6 present results for the LaLonde case where N  = 50. The 

optimal Known Propensity Score GMM estimator is the K = I estimator. The optimal 

Unknown Propensity Score GMM estimator is the K =  0 estimator and the optimal HIR 

estimator uses cross-validation for bandwidth selection. Figure 3.6 shows that the PDF
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of K  has its mode at the optimal value, K  = 0 , but is thick-tailed to the righL From 

Table 3.5, one can see that the optimal Known Propensity Score GMM estimator has the 

lowest MSE. This time it is followed by the optimal HIR estimator and then the optimal 

Unknown Propensity Score GMM estimator. The K  = 0 estimator in the Unknown 

Propensity Score GMM estimator of this chapter uses a Logit regression of the treatment 

indicator on a constant The result is identical to an OLS regression on a constant in that 

the fitted probabilities are equal to the sample mean of the treatment indicator,

1 .V
t = — . These fitted probabilities are then plugged into the weighting equation, V ,

to obtain the average treatment effect estimator. Hence, the K = 0 estimator is identical 

to the simple difference- in- averages estimator, r , , of Chapter 1. This estimator can also

be obtained through non-parametric estimation of the propensity score with an infinitely 

large bandwidth30. However, a cross-validation routine selects the optimal bandwidth 

over a range of possible values. If one of these potential bandwidth values is large, the 

cross-validation routine should never perform worse than the K  = 0 Unknown Propensity 

Score GMM estimator. This is because the K =0 Unknown Propensity Score GMM 

estimator is included in the set of the possible non-parametric estimators from which the 

cross-validation routine chooses! Hence, in Table 3.5, the HIR estimator from cross- 

validation has a lower MSE than the optimal AT = 0  Unknown Propensity Score GMM 

estimator. However, knowledge o f foe propensity score would still improve efficiency.

10 Or a finite but large bandwidth in practice.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 3.6 and Figure 3.7 show the results for the case where sample size is 

increased to N  = 150. The optimal Known Propensity Score GMM estimator remains 

the K  = 1 estimator. The optimal Unknown Propensity Score GMM estimator increases 

to the K = 1 estimator. Finally, the optimal HIR estimator now uses Silverman’s Rule of 

Thumb. From Figure 3.7, it can be seen that the right tail of the PDF of K  is now 

thinner. However, the mode of the PDF is now at the sub-optimal K  = 0 value. This 

illustrates the unreliability of the S( K)  criterion in this case. Table 3.6 shows that the

optimal Known Propensity Score GMM estimator has the lowest MSE, followed by the 

optimal Unknown Propensity Score GMM estimator, and then the optimal HIR estimator.

The optimal Known Propensity Score GMM estimator yields a 3.0% MSE reduction 

relative to the optimal Unknown Propensity Score GMM estimator and a 42% MSE 

reduction relative to the optimal HIR estimator. Also, the MSE of the optimal HIR 

estimator is now greater than the MSE of the optimal Unknown Propensity Score GMM 

estimator (the latter contains a 12% reduction). This is because sample size has 

increased, resulting in the K  = 0 estimator no longer being the optimal Unknown 

Propensity Score GMM estimator31.

Table 3.7 and Figure 3.8 present results for the case where sample size is 

increased even more to N  = 500. Again, the performance ordering of the three 

estimators remains the same. The MSE of the three estimators is converging as sample

size increases. Finally, Figure 3.3 shows that the PDF of K  for the Unknown Propensity

31 Note that the MSE of both non-parametric estimators is less than the K  —0 Unknown Propensity Score 
GMM estimator.
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Score GMM estimator becomes significantly tight around the true optimal K  value,

K  = 1. Thus, this section reinforces the intuition developed in Section 33.1. The only 

deviation occurs when sample size is low and X  is sufficiently weak such that the 

optimal Unknown Propensity Score GMM estimator is at K  = 0 . In this situation, it is 

necessarily the case that the HIR estimator with cross-validation will outperform the 

Unknown Propensity Score GMM estimator.

3.4 Monte Carlo Simulations with a Vector of Covariates

This section presents simulation results for the case where X  is a 2 x 1 vector. 

The optimal polynomial order of X , P , is now the relevant choice variable in the two 

GMM estimation procedures Again, an artificial Monte Carlo simulation and a Monte 

Carlo simulation calibrated to a subset of LaLonde’s 1986 non-experimental dataset are 

performed and the results are discussed.

3.4.1 Artificial Monte Carlo Sim ulations

The data generating process o f Section 33.1 is slightly adjusted to allow for the 

second covariate. Now, let

Yt = f a + P A + h X u  +P?iX 2l+ei,

£ < - # ( 0,1),

X u ~ U W F (- l ,l) ,* a ~WVZF(-.5,.9),

gOb+atJr,, * n xa *<f tf+ O tX v2 

| + ̂ *o-xr|Aru ♦<!

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

where (/3O,0 ,,0 2, f t , f t ,  f t)  =(.5,2,1,1,.4,.6 ) and (a ^ ,a Ma ,fa j ,a 4)= ( .lt.7 ,.5,-.4,.2). 

In this case, the average treatment effect is now equal to r  = $  + ft£ ( .T I) + f t£ (  AT,)

=  2 . 12 .

Table 3.8 and Figure 3.9 present results for the case where N  = 50. The optimal 

Known Propensity Score GMM estimator is the P  =1 estimator. The optimal Unknown 

Propensity Score GMM estimator is also the P = I estimator. The optimal HIR estimator 

uses cross-validation for bandwidth selection. Notice in the tables to follow that 

Silverman's Rule of Thumb has a 39% -  92% higher MSE than cross-validation 

throughout all of the vector X  results. Except for one case in the previous section where 

cross-validation outperformed Silverman’s Rule of Thumb in a scalar setting, the results 

conform perfectly to the feet that Silverman’s Rule of Thumb has nice optimality

properties in one dimension, but not in higher dimensions. Figure 3.9 shows that S  (P)

again does a poor job in small samples of selecting the optimal P  for the Unknown

Propensity Score GMM estimator. The mode of the PDF of P is at P = 0 and P - l  is 

foe optimal P  value. Table 3.8 shows that the optimal Known Propensity Score GMM 

estimator again has the lowest MSE, followed again by the optimal Unknown Propensity 

Score GMM estimator, and then by the optimal HIR estimator. The optimal Known 

Propensity Score GMM estimator has a 14.0% MSE reduction relative to foe optimal 

Unknown Propensity Score GMM estimator and a 17.7% MSE reduction relative to the 

optimal HIR estimator. Also, the Unknown Propensity Score GMM estimator has a 4.3% 

MSE reduction relative to foe HIR estimator.
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Table 3.9 and Figure 3.10 present results for the case where sample size is 

increased to N  = 150. In this case, the PDF of P  is still thick, but it is now centered 

around a mode at the true optimal P value, P = 1. The MSE ordering of the three 

estimators remains the same and the percent MSE difference between the optimal Known 

Propensity Score GMM estimator and the optimal Unknown Propensity Score GMM 

estimator decreases. The percent MSE difference between the optimal HIR estimator and 

the two GMM estimators is actually higher. This is most likely because the same cross- 

validation candidate bandwidth vector that was used when IV = 50 was also used in this 

case with iV = 150. The candidate bandwidth vector is more finely refined for the 

IV -  500 simulations. This candidate bandwidth rule was also used with the one

dimensional artificial data, but it did not adversely affect the results. This shows that in 

higher dimensions the MSE of the cross-validation estimators can be very sensitive to 

bandwidth selection.

Table 3.10 and Figure 3.11 show results for the case where sample size is 

increased IV = 500. The optimal Known Propensity Score GMM estimator has increased 

to the P =4 estimator and die optimal Unknown Propensity Score GMM estimator has 

increased to the P -  2 estimator. The optimal HIR estimator still uses cross-validation. 

The percentage MSE reductions between the three estimators all now lie between 1.1% 

and 5.4%. Also, the Unknown Propensity Score GMM estimator is converging to the 

Known Propensity Score GMM estimator faster than the HIR estimator. Figure 3.11 

shows that the PDF o f P  is centered around the true optimal P  value, P  = 2 , however 

the distribution is not as thin in the tails as with the same sample size in the one-
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dimensional case. Notice that the MSE of the P = 0 estimator is over 17 times the MSE 

of die optimal P = 2 estimator and yet the selection criterion function chooses P = 0 

17% of the time. This is further evidence that the S(P)  selection criterion is flawed

(which is known) but the Unknown Propensity Score GMM estimator is more efficient 

than the HIR estimator in finite samples assuming the optimal P or K  value can be 

chosen.

3 .4 .2  Monte Carlo Sim ulations Calibrated to  LaLonde Data

A vector X  Monte Carlo dataset is calibrated to the LaLonde dataset in a similar 

fashion to Section 3.32. The observed covariates are now the vector (xLl ,xL2) . To 

calibrate the true propensity score, a Logit regression of tL on (l, xLX ,xu  ,xLl2 ,xL2 ) is run

A A A A 9and the resulting estimates obtained a. -  (a0,a l,a1,at ,di ) . The last difference is that an 

OLS regression of

yt. ~  Po Pl^L P l XU +  P i*1.1 P^LXLl Ps*LXL2 » 

is tun to estimate $  and a 1 for the calibrated outcome equation. M other

components of die calibrated simulation routine remain the same.

It was discussed in the previous section that the calibrated true propensity score 

values were close enough to zero, by empirical standards, such that there were many 

singularities and the estimates were unreliable and volatile. Therefore, a truncation was 

made to the LaLonde data and one of the propensity score parameters was adjusted in
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order to center the distribution of the true propensity score. For the same reasons, similar 

actions are employed in the vector X  case. Since, of the three non-indicator variables, 

Age and Education have the best overlap in their distributions between the treated and the 

controls, they were selected as the two covariates for use in this section. Given the use of 

these two variables in the calibration routine described above, the minimum pre

modification true propensity score value was .0000256, the maximum value was .590, 

and the mean value was .069. The minimum value is definitely not empirically suitable 

for average treatment effect estimation. Thus, the following changes were made. 

Observations with an Age value less than 17, an Age value greater than 48, an Education 

value less than 8, or an Education value greater than 12 were deleted from the LaLonde 

dataset This resulted in a decrease in sample size from 2675 to 1406. Again, with only 

this adjustment, the propensity score remained low so the a , parameter was decreased to 

45% of its original value. The new true propensity score has minimum value of .173, a 

maximum value of .853, and a mean value of .457. The resulting distribution of the true 

propensity score is more centered and bounded away from zero and one. Figure 3.12 

shows the histogram of the original pre-modification propensity score and die histogram 

of the post-modification propensity score. Finally, to better enable higher-order 

polynomials to be employed in the unknown propensity score routine, sample sizes of 

100,250, and 500 are used.

Table 3.11 and Figure 3.13 present results for the LaLonde case where N  = 100. 

Sample size is small enough such that the optimal polynomial order is P = 0 for both 

GMM estimators. The optimal HIR estimator still uses cross-validation for bandwidth
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selection and will use cross-validation for the remaining sample sizes as well. Figure 

3.13 shows that the true optimal P value for the Unknown Propensity Score GMM 

estimator is selected almost 80% of the time by the selection criterion. Also, since the 

true optimal polynomial order is P = 0 , the HIR cross-validation estimator has a lower 

MSE than the Unknown Propensity Score GMM estimator. However, knowledge of the 

propensity score reduces this MSE by 3.9%.

Table 3.12 and Figure 3.14 show results when sample size is N  = 2S0 . Here 

sample size has increased enough such that the optimal Unknown Propensity Score 

GMM estimator is no longer P = 0 , but P  = 1. Hence, as one would predict, the optimal 

Unknown Propensity Score GMM estimator performs better than the optimal HIR 

estimator. The optimal Known Propensity Score GMM estimator still outperforms the 

other two. Another interesting result is that the PDF P shows that S(P)  performs

poorly again and overwhelmingly selects the sub-optimal P = 0 estimator.

Table 3.13 and Figure 3.1S show results for the final case where sample size is 

increased to N  — 500. The standard MSE ordering of the three estimators can be seen. 

Also, in MSE terms, all three estimators appear to be converging together as sample size

gets larger. Finally, the S(P)  selection criterion still performs poorly. One would

expect the PDF of P to converge mote slowly to a tight distribution around the optimal 

P as the dimensionality of X  increases, as in foe artificial simulation results of Section 

3.4.1. However, in this case, foe PDF appears to be converging not slowly to the optimal 

P  value, but slowly to a sub-optimal one.
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3.5 Conclusions

This chapter started by defining the adjusted GMM framework for use in 

estimation o f average treatment effects when the propensity score is unknown. The 

framework essentially estimates the propensity score with a Logit regression of the 

treatment indicator on higher-order polynomials of X .  The fitted probability function is 

plugged into the weighting function, V , to obtain the average treatment effect estimate. 

The key difference between this method of estimating an average treatment effect and the 

HIR method is that HIR use a non-parametric estimate of the propensity score and this 

method uses a flexible Logit specification. Given this specification, a criterion was 

developed for selection of K  or P . This selection criterion was simplified to a very 

practical and easily calculable quantity that ignored lower-order covariance terms in the 

true MSE of the resulting estimator, f .

Monte Carlo simulations were performed on artificial data and on data calibrated 

to LaLonde’s 1986 non-experimental dataset so that the finite sample properties of the 

Known Propensity Score GMM estimator, the Unknown Propensity Score GMM 

estimator, and the HIR estimator could be examined. The LaLonde dataset upon which 

the calibration was based had to be adjusted so that the true propensity score (known to

the simulator, not to die econometrician) was significantly centered in the interval (0, 1)

for all practical purposes.

The simulations confirm the finite sample intuition being developed in this 

dissertation. The Known Propensity Score GMM estimator has the lowest MSE relative 

to the two unknown propensity score estimators in every data generating process
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considered. The percent MSE reductions are as high as 14% -  17% when two covariates 

are used and sample size is small. As sample size increases, these MSE reductions are 

converging to zero. This analysis serves as the finite sample compliment to the 

asymptotic results o f Hahn (1998). Asymptotically, the propensity score is ancillary for 

estimation of average treatment effects. However, in finite samples, the propensity score 

is not ancillary for estimation of average treatment effects, based upon the results relative 

to two alternative asymptotically efficient unknown propensity score estimators.

The optimal Unknown Propensity Score GMM estimator has a lower MSE than 

the optimal HIR estimator in all cases but two. The two cases are when the optimal order 

of X  isA T = 0 o rP  = 0 . In this case X  is weak and it is necessarily true that the non- 

parametric cross-validation estimator will outperform what reduces down to the simple 

difference-in-averages estimator. In all other cases considered, the Unknown Propensity 

Score GMM estimator outperforms the HIR estimator by as much as 7%. Thus, in finite 

samples even if the propensity score is unknown, there can be a non-trivial efficiency 

gain, relative to the HIR estimator, from optimal inclusion of a subset of the information 

contained in X . Similar results also obtain under various other data generating processes 

and with use of the Linear Probability Model instead of the Logit However, estimation 

of the propensity score with the Linear Probability Model performed slightly worse than 

with the Logit

For the Unknown Propensity Score GMM estimator to be feasible in practice, 

there must exist an effective selection criterion upon which moment (polynomial) 

selection can be based. The higher-order asymptotically optimal moment selection
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criterion of Chapters I and 2, 5  (A"), has been shown to perform well in practice, even in 

small samples. The selection criterion developed in this chapter, 5  (A ), is not

asymptotically optimal. It was chosen for its simplicity. The simulations confirm that it 

tends to perform poorly in small samples and performs better as sample size becomes 

large and the effect of the omitted lower-order covariance terms converges to zero. 

However, as sample size becomes large the efficiency gain of the Unknown Propensity 

Score GMM estimator relative to the HIR estimator diminishes. If sample size is large

enough for one to feel comfortable in using S(K) ,  one might as well use the HIR 

estimator with cross-validation or Silverman’s Rule of Thumb. Silverman's Rule of 

Thumb tends to be optimal with a scalar covariate and cross-validation tends to be 

optimal with a vector of covariates. Thus, until an alternate selection criterion is 

developed, the advantages of the Unknown Propensity Score GMM estimator over the 

HIR estimator in finite sample estimation of average treatment effects may go unused.

This dissertation has served to develop and extend the field’s understanding of 

estimation of average treatment effects with finite samples. The motivation behind this is 

simply that many experimental datasets are often very small and some non-experimental 

datasets are what would be classified as small. Thus, the asymptotic properties of many 

commonly used estimators will not hold in practice. This dissertation has shown the 

finite sample advantages of two GMM estimators of average treatment effects, one when 

the propensity score is known and the other when it is unknown. The selection criterion 

for the Known Propensity Score GMM estimator is higher-order asymptotically optimal
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and performs very well in practice. The selection criterion for the Unknown Propensity 

Score GMM estimator is not asymptotically optimal and is not very reliable in practice. 

Some possible extensions of the analysis of this dissertation would be to derive an 

asymptotically optimal selection criterion for the Unknown Propensity Score GMM 

estimator and examine its finite sample performance. Also, calibration with the 

unmodified LaLonde non- experimental data was not possible due to the closeness o f the 

“true” propensity score to zero. Empirical examination of the range in which Assumption 

4 is valid and not valid would be of value to researchers who typically use datasets with a 

significantly disproportionate number of units of treated or controls.
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Figure 3.1: PDF of K  Over 1000 Samples.

Monte Carlo Simulations with Fake Data and One Covariate. (N = 50)

p(x)  Known p(x )  Unknown
K GMM Estimator GMM Estimator Non-Parametric Estimator
-1 .2782
0 .1059 .2306 Cross-Validation
1 .0923' .0960' .10002 .0929 .0985
3 .0951 .1031 Silverman's Rule of Thumb
4 .1001 .0982'5 .1012
6 .1021

Table 3.1: MSE of Various Estimators When tbe Propensity Score is Known and Unknown. 

Monte Carlo Simulations with Fake Data and One Covariate. (N -50)

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.
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Figure 3.2: PDF of K  Over 1000 Samples.

Monte Carlo Simulations with Fake Data and One Covariate. (N = 150)

p(x)  Known p ( x ) Unknown
K GMM Estimator GMM Estimator Non-Parametric Estimator
-1 .0974
0 .0351 .1516 Cross-Validation
1 .0297 .0302' .03162 .0295 .0304
3 .0292' .0308 Silvennan’s Rule of Thumb
4 .0303 .0305 .0306'5 .0301 .0315
6 .0303

Table 3.2: MSE of Varions Estimators When the Propensity Score is Known and Unknown. 

Monte Carlo Simulations with Fake Data and One Covariate. (N =* 150)

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.
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Figure 3.3: PDF of K  Over 1000 Samples.

Monte Carlo Simulations with Fake Data and One Covartate. (N = 500)

p(x)  Known p(x)  Unknown
K GMM Estimator GMM Estimator Non-Parametric Estimator
-1 .02894
0 .01030 .12627 Cross-Validation
1
2

.00882

.00862
.00878

.00867' .00993

3 .00862' .00890 SQvennan’s Rule of Thumb
4 .00885 .00890 .00883'5 .00902 .00887
6 .00896 .00907

Table 3 J : MSE of Various Estimators When the Propensity Scare is Known and Unknown. 

Monte Carlo Simulations with Fake Data and One Covariate. (N -500)

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.
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Full Samnle Treated (NSW) Controls (PSID)

Earnings 1978 
0 0

20502
(15633)

6349
(7867)

21554
(15555)

Treatment 
Status (T)

.069
(-254)

1
(0)

0
(0)

Earnings 197S 17851
(13878)

1532
(3219)

19063
(13597)

Age 34.2
(10.5)

25.8
(7.2)

34.9
(10.4)

Education 12.0
(3-D

10.4
(2.0)

12.1
(3-1)

Married .819
(-385)

.189
(.393)

.866
(340)

Black .292
(-455)

.843
(.365)

.251
(.334)

Hispanic .034
(.182)

.060
(•237)

.033
(.177)

Table 3.4: Sample Means (Standard Deviation) of Post-Training Earnings Treatment Statns, and 

Pre-Treatment Variables for the Treated Sub-Sample of the NSW AFDC 

Participants and the PSID Controls of LaLonde(i986).
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Figure 3.4: Histogram Plot of Earnings in 1975 (Top), Education (Middle), 

and Age (Bottom) for Treated (Sofid) and Controls (Dotted).
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Figure 3 i :  Histogram of True Propensity Score Values Before 

Modification (Top) and Alter Modification (Bottom).

(X * Age)
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Figure 3.6: PDF of K  Selection Over 1000 Samples.

DGP Calibrated to LaLoode’s Nod-Experimental Data with One Covariate. (N = 50)

p(x)  Known p(x )  Unknown
K GMM Estimator GMM Estimator Non-Parametric Estimator
-1 2.925
0 1.422 1.458' Cross-Validation
1 1.386“ 1.466 1.425*2 1.457 1.498
3 1.498 1.538 Silverman’s Rule of Thumb
4
5

1.531 1.527

Table 3.5: MSE ofVarioas Estimators When the Propensity Score is Known and Unknown. 

DGP CaHbrated to LaLonde’s Non-Experbneutal Data with One Covariate. (N = 50) 

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.

(xlO7)
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Figure 3.7: PDF of K  Over 1000 Samples.

DGP CaHbrated to LaLonde’s Non-Experimental Data with One Covariate. (N =150)

p(x)  Known p( x)  Unknown
K GMM Estimator GMM Estimator Non-Parametric Estimator
-1 9.681
0 4.763 4.782 Cross-Validation
1 4.514* 4.656* 4.7232 4.638 4.707
3 4.666 4.733 Silverman’s Rule of Thumb
4 4.777 4.833 4.711‘5 4.786 4.968

Table 3.6: MSE of Various Estimators When the Propensity Score is Known and Unknown.

DGP Calibrated to LaLonde’s Noo-Experimental Data with One Covariate. (N«1S0) 

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.

(xIO6)
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Figure 3.8: PDF of K  Over 1000 Samples.

DGP Calibrated to LaLoode’s Non-Experimental Data with One Covariate. (N = 500)

p(x)  Known p ( x ) Unknown
K GMM Estimator GMM Estimator Non-Parametric Estimator
-1 2.924
0 1.427 1.423 Cross-Validation
I 1.394 1.368* 1.4842 1.325* 1.385
3 1.343 1.386 Silverman’s Rule of Thumb
4 1.376 1.406 1.393*5 1.402 1.420
6 1.434 1.444

Table 3.7: MSE of Various Estimators When tbe Propensity Score is Known and Unknown. 

DGP Calibrated to LaLoode’s Non-Experimental Data with One Covariate. (N-500) 

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.

(xlO6)
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Figure 3.9: PDF of P Over 1000 Samples.

Monte Carlo Simulations with Fake Data and Two Covariates. (N = S0)

p(x)  Known p(x)  Unknown
p GMM Estimator GMM Estimator Non-Parametric Estimator
-1
0

.373

.129 .287 Cross-Validation
1 .10922* .1 0 f ..112*2 .100 .127
3 .104 .146 Silverman’s Rule of Thumb
4
5

.114 .215

Table 3 J&: MSE of Various Estimators When the Propensity Score is Known and Unknown.

Monte Carlo Simulations with Fake Data and Two Covariates. (N = 50) 

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.
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Figure 3.10: PDF of P  Over 1000 Samples.

Monte Carlo Simulations with Fake Data and Two Covariates. (N = 150)

p(x)  Known p(x)  Unknown
p GMM Estimator GMM Estimator Non-Parametric Estimator
-1 .1172
0 .0435 .1943 Cross-Validation
1 .0298 .0307” .0377”2 .i0294” .0316
3 .0313 .0340 Silverman’s Rule of Thumb
4 .0316
5 .0327 .Uj  /U

6 .0332
Table 33 z  MSE of Various Estimators When the Propensity Score is Known and Unknown. 

Monte Carlo Simulations with Fake Data and Two Covariates. (N -150)

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.
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Figure 3.11: PDF of P  Over 1000 Samples.

Monte Carlo Simulations with Fake Data and Two Covariates. (N = 500)

p(x)  Known p( x)  Unknown
p GMM Estimator GMM Estimator Non-Parametric Estimator
-I .03599
0 .01298 .16131 Cross-Validation
1 .00900 .00886 009Hi*
2 .00896 .00876*
3 .00886 .00898 Silverman’s Rule of Thumb
4 .00867* .00898 .014005 .00905
6 .00911
7 .00917
8 .00929

Table 3.10: MSE of Various Estimators When die Propensity Score is Known and Unknown. 

Monte Carlo Simulations with Fake Data and Two Covariates. (N-S00)

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.
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Figure 3.12: Histogram of True Propensity Score Values Before 

Modification (Top) and After Modification (Bottom).

(X=Age and Education)
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Figure 3.13: PDF of P  Over 1000 Samples.

DGP Calibrated to LaLoade’s Non-Experimental Data with Two Covariates. (N = 100)

p(x)  Known p(x)  Unknown
p GMM Estimator GMM Estimator Non-Parametric Estimator
-I 13.994
0 7.049' 7.674* Cross-Validation
1 7.450 8.597 7.331-2 7.672 8.663
3 8.043 Silverman’s Rule of Thumb
4
5

8.371 9.630

Table 3.11: MSE of Various Estimators When the Propensity Score is Known and Unknown.

DGP Cafibrated to LaLonde’s Noo-Experimentai Data with Two Covariates. (N = 100) 

Optimal GMM Estimator of Each Class in Bold sod Italics with an Asterisk.

(xlO6)
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Figure 3.14: PDF of P Over 1000 Samples.

DGP CaHbrated to LaLoude’s Non-Experimental Data with Two Covariates. (N = 250)

p{x)  Known />(x) Unknown
p GMM Estimator GMM Estimator Non-Parametric Estimator
-1 5.597
0 2.883 3.854 Cross-Validation
1 2.876* 3.072* 3.294*2 3.003 3.105
3 3.033 3.177 Silverman’s Rule of Thumb
4
5

3.056 4.227

Table 3.12: MSE of Various Estimators When the Propensity Score is Known and Unknown. 

DGP CaHbrated to LaLonde’s Non-Experimental Data with Two Covariates. (N = 250) 

Optimal GMM Estimator of Each Class in Bold and Italics whh an Asterisk.

(xlO6)
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Figure 3.15: PDF of P  Over 1000 Samples.

DGP CaHbrated to LaLonde’s Non-Experimental Data with Two Covariates. (N = 500)

p (x ) Known p(x)  Unknown
p GMM Estimator GMM Estimator Non-Parametric Estimator
-1
0

2.716
1.462 2.781 Cross-Validation

I 1.421 1.568 1.493*2 1.420* 7.477*
3 1.492 1.509 Silverman's Rule of Thumb
4
5

1.481 1.547 2.074

Table 3.13: MSE of Various Estimators When the Propensity Score is Known and Unknown. 

DGP Calibrated to LaLoode’s Non-Experimental Data with Two Covariates. (N*500) 

Optimal GMM Estimator of Each Class in Bold and Italics with an Asterisk.

(xlO6)
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4. Appendix

P r o o f  o f  P r o p o s i t i o n  1 . 1 :

Let X  be discrete with known support (YnYv—Y j ) > p { *  ~Y  

p{T = \\ X  = yy) = /zy,and {n x,Jt n s ) be a vector of nuisance parameters. Also,let

Ntj be the number of observations with - 1 and x, -  y , ,  and let be the number of

observations with x, = yv. The discrete analog of the GMM framework is

/ \ y- t
p{x)  1 - p { x )

i { * = y .} ( '-p (* ) )

^ ^ H ' - p C*)),

Thus, t/r contains M  = 7+1 moments. The yr, moment has remained unchanged and a 

linear combination of the yr2 moments perfectly accounts for a ( x ) ( / - p ( x ) )  for any a . 

Given this setup, the optimization problem of the Empirical Likelihood estimator is

S N
max £.(tt) = V ln r r  s.L (0 5 ^ = 1

* 1 -  « .V *

(fi)
pi

r y,'*,
^p U )  i - p U )

—T =  0
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(iii) = / ,} (* ,-p (x ,) ) )  = 0 V ye{l,.. .,y} ,
l «  I

where l{£} is an indicator function equal to one if B is true and zero otherwise.

Therefore, the Lagrangian is

£  = X l n ^  +n( l - j > ( 1+S  ~ P (X*)))
ml \  ml J /»I y ml

Note that

m l ^ { t i )  l - p U ) y

and its Lagrange Multiplier is identically zero because relaxing the (ii) restriction changes 

die value of f  but not die maximized value of L ( t t ) . Taking the derivative with respect 

to 7C, yields

- J —  » ? - £ * , ( i f a  = r , } ( ' . - p ( * , ) ) ) = o  V / e { L . . . , 7 V } .
K i M

Multiplying each side by n t and summing over all N  equations yields v \ - N . Solving 

for nt gives

it, =- N

=10 t o - /» (* )))
V i e {I,-..,N}.

Combining rti with (iii) implies

j : ±  / j f  ŷ (t| P ( z , ) )------0 vye{l.... J }.
rml iV
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For a given j , this implies

= 0

N  ( ' - " < )  , f j v  _ N ) - n

O - ^ / i  - I f f  _ y  ) » -
'  *■>! \ ' '  Xj} A.I — J-p , 

AT '

N,u
A N u - N . m , AT ^

, _ L = — = — 2------------ - Vy'6 {i,...,y}.
N  N. p f c - t i , )  11,(1-n )

Thus, the Empirical Likelihood estimator of r  is

( \  
1>V

sJl
IIU) N f y r ' ,

I y-‘ "
, p U )  l -p (* < ) ,

i v
= - £ -  N  ^

y,-f,
p ( x t) l - p ( x f)

n1 l_
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Inspection will reveal that the Empirical Likelihood estimator above is equal to the non- 

parametric propensity score weighted estimator (denoted the “estimated weights” 

estimator in HIR)

ar % p ( Xi) i - p { Xi) '  

where p ( x t) l{x, = / ,} ——. Since the CUE is asymptotically equivalent to the EL
N-j

estimator, it not only has the same asymptotic distribution as i HIR, but is also 

asymptotically identical to i HIR under a general specification of the propensity score and 

discrete support X .

Q.E.D.

P r o o f  o f  A s y m p t o t i c  E x p a n s i o n  1 . 1 :

(1) Follows from the Central Limit Theorem.

(2) Follows from the Central Limit Theorem.

(3)

= ( f t- ‘ -  Q '!H Q -') (or* -ST ' HQ-‘) (Q + H)*‘

= ( « - '  -  q - 'h q -1 ) ( ( a + h  ) (q -‘ - n r 'H s r ' ))’*

= ( Q ' - Q ' ,H Q ,) ( / - H S r ‘ +H C l 1 -HS2"lHS2'‘) 

= (£2-‘ -  OT‘HQ*1 Jff-HQ-'HSi-1)'‘
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= (Q _,-S2_1H£2_l)(/+HS2_1H i2 'l) ( /+ H Q " ,HS2‘‘)"1( /-H Q - 'H Q "1)' 

= (Q -‘ -  Q -'H Q '1) ( / + H ST'HQ ' 1) ( ( / -H Q  'H Q '1) ( I +HQ~'HQ-'))' 

= (Q-, - Q - 1H Q - ') ( /+ H Q -,H Q -l)(/-HQ-'HQ-'HQ-'HQ-')" '

= (£2-, -Q - 'H Q -1) ( /+ H n - 'H Q - ,)+o;i( ^ )

= ft- ' -  Q"‘ H Q '1 + ST' HQ-' HQ-' + op(N-' )

In the proof of (3), we are keeping only the terms that are of order N~l or higher. 

Q.E.D.

P R O O F  O F  L E M M A  1 . 1 :

Follows from equations (1), (3), and the equation for A , (insert number here). 

Q.E.D.

P R O O F  O F  A S Y M P T O T IC  E X P A N S IO N  1 . 2 :

(1) Follows from the Central Limit Theorem.

(2) FoDows from the Central Limit Theorem.

O)

= A 'rr^  +A'
*
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— A +

£ r'H Q -‘

— A <Tŷ i +• /? iVr + SWr + 0^1^ ^  j •

where /? VT = ,’a " 17  5 > *  1 ( l | r E ( W - r )* '» - a m )1 =  0 , (AT1) andN

^ T= - ^ S ^ j l  ^ Z f l K - r K - « ^ ) ] = O p( ^ ) .  TOsis 

because the highest order of A is and (4) and (10) are Op | aT ^ |  . Thus, the

highest order o f the product is AT', the next highest order is N ^1, and the other terms 

are op \ n or less.

y /■
I -A ' £ ? r*

1+A'
y • \ v  y , "W Y f  i
7 f 5 > „  III 1+4  v S r , , I I  f i - a{  - 5 > „

yy

r r 
1+A' 1 V  ~ 2 > „ I -A ' r i v 1 + A' r i v  

w ? r * y y
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r f  
1 + A'

7 ? r -
1-

Q.E.D.

P r o o f  o f  T h e o r e m  1 . 1 :

r - r

( (  1
- f f L ( K - * ) \ -  ( ^ r  *  + Rsr + Ss t ) t+

r^-S (n  -  *■) j -  (fli.+Kx * s , ,)' o„x + *„+s„)

= rm + + $ j + 5  | + ̂ J+^J+ ^ 4  +0p (* K) •

The fiist equality holds because of the expansion of (insert number). The second equality

arises from equation (insert number) and substitution of the order N  ^1 term of A

The third equality substitutes equation (insert number), the equation for A in the first 

factor. Finally, the fourth equality results from multiplication of the two factors and

ignores terms that are of order less than N  ^1.

Q.E.D.

1 +

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

P r o o f  o f  C o r o l l a r y  1 . 1 :

l .Vt

»V2

= - £r‘v,'£2" [ - ^ S v 1, =--i-a ' i r ‘
N *V: ’ i-l

V V

V m

V 2IM.

L.v i

1
W2 *■1

.,>1

<■ < tf-l .V 

y»i *»i

jv-i .v
Z Z ^ - u / ' O v * . -<*>.,)y-i /-!

m-i ,v
2 2 «
/ - I  i - l

-I
ly

v-i ft
Z Z ^ - L yy«l »*i

132

o r

tyv/PxM-l j  )
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1
N 2

1*1 ) * l  j - 1  i * l

t f - 1  i £ - l  V  V

(*1 7*1 i*I t*l
- <UV-t.y)

\V2

I * . J

1
t f 2

y

i - l

7*1 l*t

Af-i y

X  2 X - I . / '  ( ( ^  ~ r )  Vltj ~ < 0
7*1 i - l

.v-i .v-i y s
= - 7 7 r X X X X < V ^ ( ( f : - r ) ^ - ( T Kr2/)

m l  7*1 m l  i * l

■'M

7 ? r -
Q 'H Q 'H a ' iT ,r*2

\ fL v * r  & ' Q '1 T f X ( ^ * “ Q )
>» r /  v * J \  ‘ >
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1
N*

(  M - \ M - \ S  S

X  X  X  X  -  %)
p * l / s |  r » l  j * |

£  £  £  £  ( yh,M-&*i ~ "«-../)
 ̂ />*! /■! r*l j*l 

 ̂ .If-l AT
X X V O M ^ .  “ <».,) "7*1 ** t

t f - l  .V \ \

. t f - l  fV

7*1 i*l

.tf-1 fV
X  (VvVm  ) •" S  £ ^ -U f'‘ {VvjVvM-i-Vv-uj )
/ “ I i - l  y » l  m l

a l<r,Vw,

1
V

^  . l f - l 2 f - i . l f - I A f - l  S S S

X  X  X  X  X  X  X  “*>* ) <v‘ ( W * !  -<W,y )
p * l  /* !  /* !  7 * 1  rrn 1 Jml jm]

( V^lV^ -  °>* ) % '  (^2 tPllM-l ~ ®JM •> )
p»I  / s i  r*l  7* 1  r* l  i * l  <*l

f l ' a ►'•'i

.V2

-  ^ 2 > - )  - f ) * ' !.-<n> ,)]

f  l t ' L 0iu i({v. - r ) ¥ 2iJ-<yyWlJ)
j-1 i-i

f  . I f - l  Jlf-I ,V .V

_ 1_
N 3

X X X  (*2,1̂ 2* _<UU )
/»■! I *i r * l  j* (

p m \ Z«l rm  1 j b |
( V^M-lVls' -<O.W-U ) £  ( (^  " r )^2,y -Vy^j  )

^  y - l  i - l

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

_ 1_
N 3

U  - I  U  - I  M  - t  h i  - I  .V .V .V

X  £  X  X  X  X  X  v ^ p / '1 ( v ^ , ^  -" .z ) V  ((^
 ̂ p « t  f « l  r»l  y*I  r* l  m l  |b |

r A  ‘

a i-i 1 v  
i * ? * -

. V - l  .V . V - l  N

 ̂ml ^  ml ml 7"I ml

.ir-i .v-i y y y|  M  “ I  M  " I  f t  f t  f t

= jjt X X X X X < 1 ( - r) ̂ jri,
m l y * ! m l  m l  i* l

'y4

= -<T, Q -‘

. ( / - I  J M  N  U - \  J f - I  U  S

X  X  S °V y ,p W 2r, I X  X  I S w V : ,
( • I  7*1 m l  ml

|  f M̂\ it:I ̂

AT3i V  l  p - l  f * l  r » l

A/'3

f  J / - 1  J / - 1  J f - l  J / - 1  S N H
I S I I S X I

^ p « l  / * l  m l  > * l r * l  m l  m l

=  £

,2N
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1
N \

1 (*-
N 2

z £ £ ((K* - rW )j-l >-l ' ' ,

Z £ ( ( ^ - r W )

QTl0

£2~'<y.

=  - — <r 'orl(Tv
N 'v*l >>:

TslRm )

= E
f* l y * I i » l  i* l

v -i jtr-i y y

X Z X 5 X 'V , „ ( v  2i,W-f* 1 ;■! J*l j«l

Ky}

1*1 ) * I r * l  1*1 1*1

=  y r £

1*1 >*I r * l  J « | I - I
a i l ( K  - r ) V 2 *  ( W i m - V *  )

n 'a ,

Remember that E(Vt - r )  = 0, £ ( 1//^) = 0, and E ^ 2ii/A2/ - q | =  0. Therefore, the

expectation of the individual sums equal zero whenever r *  s , s *  i , or r  *  1 . Thus, 

there is one case that has a non-zero expectation, r =s - i . Hence,
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(  Af-I u-\ s

N

X X X < ‘ (K )ml y*| ml

^  £  l !® ./1 (^, ~ T)^2« (V'ii..*-.^,-V»-X.J ) l»l /- 1 i-l

G 'tr ,K*2

/  V -l .*/-!

_ 1_
W1

r - l  ; * l

I W-l
*>2

^(rv i^v i)

^ r
^2,1

r * l

'  X X X X ® , > „ ( ^ , ^ - ^ )
» - l  y - l  2 -1  l - l

N
J  J

A f-1  M-l S  S  

£ £ £ £ <  XM-Wlit ^M-Uj )
( « l  jm I j a (  j * l

S2‘‘<Tv*t

=- j P a ^ a r '
M - I M - I S  *V S

xE

2 1 2 2 2 > *  > 2 ^ 2 2 , ( ^ 2 1 1 ^ -%  ) 
(■I / * l  r * l  i * l  i * |

X X X X X V (v
r* l jm |  r» I  m l ml

2iM -

\

xor'a .

M-l M - t  S  S  S  ............................................

x x x x x v  v>*-«  ̂ (vxxViu- ^ ) ••• x x x x x v v w v ^
r * l  jm  I r * l  i * !  i * l  

^2

M-l M-l N .V .V

2iJ
1-1 j  - I  r —I 2-1  i - l
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=  r a v. Q~‘N} 9:
(  AT—I .M-l .VI I  I <  Va,̂ a, (Vm Wv-(Om)f*l )•I 1*1

x E

M - l  A#-1 .V

X X X ^ ’VanH

M - 1 M -l .V

/* !  y * l i* l

M - l  M -l  .V

X  X  W * -. V* (Va^K, -® y ) -  £  X X ^ 'V a j f -1*1 >*1 1*1 tmI > « | / - I

xS2"‘cr
• '* '2

’ irj ^N

(  .M -l .M -l 

f* l / * l

M - l  M -1

I I *f*t /•!

M - l  M - l M - l  M - l

X E <u./"ICov( ^ - m̂ s1,v3, ^ )  ••• S I w „
f*l y*l f* l /* !

Tvt .̂v:)

=  - £
y

^M-I.M-IJV .V

y 2 X  2  X  X® V V te (( K - T  ) V :, -< T ^y
f - l  y - |  i * |  i - l

£ 1 1 1 1 I “>«" (rr -  *)Vf!. ((y, -  t)  Vv  -  <Tr n )
I-l >» I r»l x»l i»l

f  i f - I  .M-l .V

- 7 F e H I V  (y . - r ) ¥ t.  {(K - f ) ^ M -<Ik,u )
I - I  j * l  i - l

1
N 2

f  , V - I  M —\

X  E < ‘Cov(( V t - ^ V u M - T)'T*J)i-i /-i
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M-l )

',Cov(vJ4J, . lVa„Vaj#-^2#)
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—rcr, Q_l£
JV3

'  I S ' t t  ±V»,V»o>„-' ( (K -T)W„
r«l jm\ ml s*\ i« l

M-l M-1  .V X X
XXX X X ^ - i P t o ^ " '  ( (K -T)V2iJ
f a t  ju I r « l  i « I  1*1

X X X^/'Vzn^, ({K -*)Vv -<*vWlJ)
r* l > • !  * •  I

M-l M-l X
x x x < v 2 U#-l V*2lt{{K r )v*2tf ^ r i / )
(■1  y « l  i» l

(  S4 -I V -1
X X < ' Cov('i'»w»,’{ vi ~TW»j)f»! y* 1

X 2 < < H w  2f J tf - I(■I

=s(T„R„)
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f  (  M - l  M - l  1V N

£ £ £ £ » * '
pm I / * l  4*1 r* l

v - i  .v -i .v y

£ £ £ £ • * -
p»I /*! 4*! r*l

/ 'w - I . W - I . V  .V

w 2 f i  jm  I jm  I j . I

S i x s s s s s ^ - v ,  'Vû z* (lP»,1KM -a>u ) ({v, - z )W i„
p * l  /> !  r * l  y » l  !■ !  f » l  j * l  t» l

'VitpVz«(v Ir M - iVih-V m-u )({K-*)V2t G\
^  pm  I [ml / * |  j m \  (■ ) rm \ ^ 1  f»[

*Viy

This expectation equals zero whenever one of the four indices, k,r ,s ,  and i , does not 

equal one of the others. Also, we can ignore the case when k =r - s  =i because it is of 

order N~*. Thus, we consider the three cases when (k  = r,s=  i , r * i ) ,

(k = i , r = s , s * i ) , and (k  = s,r= i,s *■ i ) . The equation above becomes

N *<Jy¥2 ^  E

X X X X X X " A X  (VmVm -°>t ) Wm (( K -T )v2ij -<TyWlJ )
pm I /■! r«| jm I i m| r*i

M - l  M - l  M - l  M - l  y

Z Z Z  Z Z Z V j ,  -*WV* ((̂  - r ) ^  - a ^ )
pm I fmt t« l  jm l {ml r * t
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(  A f - l .V - l .W - l  A f - l  .V \

X X X X X X V V V * ,  {WnW-ux -Oiu)¥2ip({K -*)¥*» -°v*u)
p m \ (m \  fm J j m \  j s |  m  I

T V
M - l  M - l  M - l  M - l  N

X X X X X X ^ / W * ,  " « * - u  )^2,P( ( ^  - 7 ) ^  - O - ^  )
p « ( / s i  r* l y s i  i s (  j » i

— T ff f ,  £2~'/:
T V 4 K , , J

f  . W - l A f - l A f - l V - l  .V

X X X X X X ^ X ' V z , , ^ ,  ( r Mr a  -<yw) ( ( ^ - ^ ) ^  - O y ^ )
pm  |  / s i  f » l  jm \  ( « |  J » j

.V - l.W -l.V -l.V -l .v

X X X X X X ^ /V V ^ -  _<u«-u )((̂  ~r) ^  -<̂ ri/)
s i  l * \  f *1 j m \  f s t  |« i

f  .V -l .V -l .W-l M - \

X  X  X  X  QW ‘C o v ( v r 2* ,  ^  ) C o v ( y  21(, ( ^ - r ) y r 2 y )
p.| /.| f.| y-l

— rOV_ Q*
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For the same reason as mentioned above, we consider the three cases when

(k  = r,s= i , r * i ) ,  (k  = i ,r  =s,s *  i ) , and (fr = s ,r=  i , s *  i ) . The equation above

becomes
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For the same reason as mentioned above, we consider the three cases when

(k = r,s= i , r * i ) , (k = i,r = s ,s ± i ) ,  and (k  = s,r= i , s * i ) .  The equation above

becomes
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For the same reason as mentioned above, we consider the three cases when
(it = r,s= i, r * i ) , (k  = i,r —s, s *  i ) , and (k = s,r= i ,s*  i ) . The equation above
becomes
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For the same reason as mentioned above, we consider the three cases when
(k = r,s= i, r * i ) ,  (k  = i,r = s ,s*  i ) , and (k = s,r= i ,s *■ i ) . The equation above
becomes

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

=  - ^ - r ( J y w 'or'E  
N  V¥l

f  W-l .V-l M-l v-i x2 2 2 2 2 2 V  a>SlViriVi9 (VuVu -  <0,,) ( v v Via “
p * I  / • [  f * l  ; 4  1 4  r m

W - l  W - l  W - l  W - t  N
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For the same reason as mentioned above, we consider the three cases when

(k = r , s = i , r * i ) ,  (k  = i,r =s,s *  i), and (k = s,r= i , s * i ) .  The equation above

becomes
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For the same reason as mentioned above, we consider the three cases when
(k  = r,s= i , r * i ) , (k = i,r =s,s * i ) , and (k= s ,r=  i ,s*  i) . The equation above
becomes
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For the same reason as mentioned above, we consider the three cases when

(k = r,s= i , r * i ) ,  (k  = i,r =s,s * i) ,and (k = s,r= i ,s *  i ) . The equation above

becomes
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For the same reason as mentioned above, we consider the three cases when

(k  = r,s= i , r * i ) ,  (k = i,r = s ,s±  i) , and (k  = s,r= i ,s* i) . The equation above

becomes
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For the same reason as mentioned above, we consider the three cases when
(k  = r,s= i , r * i ) , (k  = i,r  =s,s  *  i) , and (k = s,r= i ,s*  i) . The equation above
becomes
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f  Jtf-IM -lJtf-IV -l2222 °y¥l.pa>pr \ ~ lCov{v2n,¥2il )Cov(Vm,¥2tJ)
p m |  / a t  f a t  y m\
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P r o o f  o f  L e m m a  f  . 2 :

Follows from the Central Limit Theorem and die properties of consistency.
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Q . E . D .

P r o o f  o f  T h e o r e m  1 . 2 :

It can be seen that £ ( r v,2), a n d c ( r v,rv,)  are Op(iST‘). The remaining terms

of S( K)  are Op ( AT2). S( K)  equals S( K)  but composed of sample expectations.

Note that S (£ )  is Op^N~x) and A - A  = Op^ N <=> A—*A for any A and A.  Given 

Lemma 2, it is readily observed that

E ( T , ' ) - E  (T*,‘ ) = j O r (a T * ) = O, (a t-K ) (26)

£ (  r „ r „ )  -  e (  r„rn }= - i o ,  (w ‘M) = o , (  a t * ) . (27)

This is because and E(7^,7]vz) = '^ '  wheie C, and C2 are constants with

respect to ,V. C \-C ,= O ^ N '% }  for / -  {l .2} from Lemma 2. Also,

) -  £ ( .4 ,A ,)  = -jjrO , (aT * )  = O, ( A T^), (28)

for(s4, B, i J) corresponding to the remaining terms composing S( K) .  Equation (28) 

holds for the same reason as the previous two except, in this case, the constant (with 

respect to N ) is being divided by N 2 as opposed to N .
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Using the results of (26) -  (28), it can now be shown that S( K)  is higher order 

asymptotically optimal for selection of K  with respect to Donald and Newey

(1999) show that a selection criterion is higher-order asymptotically optimal if

Note that

S( K)  '

^ ( r , , 2) - e  ( r „ ! )| | i (  r „ r w ) -  t  ( t„ t„  i

— s w — l+ * ? E — m — 1

) |  ) - £ ( * «  ) |  [£ ■  ( « v i « . v i )  “  £ (

+ S f  S ( K )  ,P  S ( K )   < ------------------ S ( K ) ---------------

+sup
K

£(r^ ,)-£(rvl/?.VI)| |£(rv2£vi)-£(ry2£vi)| |£(rvt/?„,)-£( rVI* J
------------- —!----------- 1 +supJ---------------r— r------------- *■ + S U pJ----------------------  L

S( K)  K S{K)  Y  S{K)

| £ ( r . A . )  rvj^v: I  I f  ( XJIS VIJ f(7*W|SW|)j | f (  vi) ^(?v2^ii)|
+ *  W )   <p — 51*5---------  ’? ------------ 51*5-----------

|£(r»,s.V!)-£-(ryisV!)| |£(r„A1)-£(7;,!s.„)|
+ “ p ---------- 5 1 * j-----------+* f  m   * ----------51*5-----------1
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|£(r„s„) -£(r„sV!)| l£( r„s»,)-£( r,,s„)|
— m — ^ — m — ? — m -------------

The first two terms are 0'( W"X) i - y \— -—^  = Op I N  ' z J. Therefore they are also op (1). The 
Or ( N~)  \ I

entire sum is 0 ,(1 ). Thus, 5 ( /l) satisfies (29) and is higher order asymptotically

optimal for the choice of K  with respect to the selection criterion S( K)  for the GMM

model considered.

Q.E.D.

P r o o f  o f  T h e o r e m  2 . 1 :

Let yr =yr and see the proofs above. 

Q.E.D.
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